Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 57(32): 11814-11822, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37527415

ABSTRACT

Brazil is the second-largest ethanol producer in the world, primarily using sugar cane as feedstock. To foster biofuel production, the Brazilian government implemented a national biofuel policy, known as RenovaBio, in which greenhouse gas (GHG) emission reduction credits are provided to biofuel producers based on the carbon intensities (CI) of the fuels they produce. In this study, we configured the GREET model to evaluate life cycle GHG emissions of Brazilian sugar cane ethanol, using data from 67 individual sugar cane mills submitted to RenovaBio in 2019/2020. The average CI per megajoule of sugar cane ethanol produced in Brazil for use in the U.S. was estimated to be 35.2 g of CO2 equivalent, a 62% reduction from U.S. petroleum gasoline blendstock without considering the impacts of land use change. The three major GHG sources were on-field N2O emissions (24.3%), sugar cane farming energy use (24.2%), and sugar cane ethanol transport (19.3%). With the probability density functions for key input parameters derived from individual mill data, we performed stochastic simulations with the GREET model to estimate the variations in sugar cane ethanol CI and confirmed that despite the larger variations in sugar cane ethanol CI, the fuel provided a robust GHG reduction benefit compared to gasoline blendstock.


Subject(s)
Greenhouse Gases , Saccharum , Gasoline , Greenhouse Effect , Biofuels , Brazil , Ethanol
2.
Biotechnol Biofuels ; 12: 281, 2019.
Article in English | MEDLINE | ID: mdl-31827609

ABSTRACT

BACKGROUND: The hydrotreatment of oleochemical/lipid feedstocks is currently the only technology that provides significant volumes (millions of litres per year) of "conventional" biojet/sustainable aviation fuels (SAF). However, if biojet fuels are to be produced in sustainably sourced volumes (billions of litres per year) at a price comparable with fossil jet fuel, biomass-derived "advanced" biojet fuels will be needed. Three direct thermochemical liquefaction technologies, fast pyrolysis, catalytic fast pyrolysis and hydrothermal liquefaction were assessed for their potential to produce "biocrudes" which were subsequently upgraded to drop-in biofuels by either dedicated hydrotreatment or co-processed hydrotreatment. RESULTS: A significant biojet fraction (between 20.8 and 36.6% of total upgraded fuel volume) was produced by all of the processes. When the fractions were assessed against general ASTM D7566 specifications they showed significant compliance, despite a lack of optimization in any of the process steps. When the life cycle analysis GHGenius model was used to assess the carbon intensity of the various products, significant emission reductions (up to 74%) could be achieved. CONCLUSIONS: It was apparent that the production of biojet fuels based on direct thermochemical liquefaction of biocrudes, followed by hydrotreating, has considerable potential.

3.
Bioresour Technol ; 251: 249-258, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29287277

ABSTRACT

This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel's fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affecting biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel.


Subject(s)
Biofuels , Greenhouse Gases , Fossil Fuels , Greenhouse Effect , Petroleum , Glycine max , United States
5.
J Org Chem ; 63(21): 7370-7374, 1998 Oct 16.
Article in English | MEDLINE | ID: mdl-11672385

ABSTRACT

Described in this paper is the synthesis and study of a rigid "coplanar" noncovalent electron-transfer model system. This putative noncovalent complex juxtaposes a novel donor (chlorin) and acceptor (naphthalene diimide) via a three-point hydrogen bonding interaction (CDCl(3), K(a) = 364 +/- 47 M(-)(1)). It was studied by steady state fluorescence, time-resolved luminescence, and transient absorption methods. The results of the studies are consistent with (1) forward intraensemble electron transfer (ET) taking place rapidly following photoexcitation of the chlorin donor at 575 nm (k(ET) = 7.6 x 10(8) s(-)(1); DeltaG(cs) approximately -457 mV; Phi = 0.91) and (2) back electron transfer occurring even more rapidly.

SELECTION OF CITATIONS
SEARCH DETAIL