Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 247: 109846, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38211698

ABSTRACT

Tobacco smoking remains a leading cause of preventable death in the United States, with approximately a 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH) of male and female mice. We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.


Subject(s)
Nicotine , Substance Withdrawal Syndrome , Male , Female , Mice , Animals , Nicotine/pharmacology , Nicotine/metabolism , Neuregulins/genetics , Neuregulins/metabolism , Substance Withdrawal Syndrome/metabolism , Hippocampus/metabolism , Signal Transduction , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism
2.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711798

ABSTRACT

Tobacco smoking remains a leading cause of preventable death in the United States, with a less than 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH). We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.

3.
Addict Biol ; 26(6): e13042, 2021 11.
Article in English | MEDLINE | ID: mdl-33864336

ABSTRACT

Astrocytes have become established as an important regulator of neuronal activity in the brain. Accumulating literature demonstrates that cocaine self-administration in rodent models induces structural changes within astrocytes that may influence their interaction with the surrounding neurons. Here, we provide evidence that cocaine impacts astrocytes at the functional level and alters neuronal sensitivity to astrocyte-derived glutamate. We report that a 14-day period of short access to cocaine (2 h/day) decreases spontaneous astrocytic Ca2+ transients and precipitates changes in astrocyte network activity in the nucleus accumbens shell. This is accompanied by increased prevalence of slow inward currents, a physiological marker of neuronal activation by astrocytic glutamate, in a subset of medium spiny neurons. Within, but not outside, of this subset, we observe an increase in duration and frequency of N-methyl-D-aspartate (NMDA) receptor-mediated synaptic events. Additionally, we find that the link between synaptic NMDA receptor plasticity and neuron sensitivity to astrocytic glutamate is maintained independent of drug exposure and is observed in both cocaine and saline control animals. Imaging analyses of neuronal Ca2+ activity show no effect of cocaine self-administration on individual cells or on neuronal network activity in brain slices. Therefore, our data indicate that cocaine self-administration promotes astrocyte-specific functional changes that can be linked to increased glutamate-mediated coupling with principal neurons in the nucleus accumbens. Such coupling may be spatially restricted as it does not result in a broad impact on network structure of local neuronal circuits.


Subject(s)
Astrocytes/drug effects , Cocaine/pharmacology , Neuronal Plasticity/drug effects , Nucleus Accumbens/drug effects , Animals , Astrocytes/metabolism , Calcium Channels/drug effects , Dose-Response Relationship, Drug , Glutamic Acid/metabolism , Male , Neuronal Plasticity/physiology , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/deficiency , Self Administration
4.
Front Neurosci ; 15: 620869, 2021.
Article in English | MEDLINE | ID: mdl-33841076

ABSTRACT

Calcium imaging has gained substantial popularity as a tool to profile the activity of multiple simultaneously active cells at high spatiotemporal resolution. Among the diverse approaches to processing of Ca2+ imaging data is an often subjective decision of how to quantify baseline fluorescence or F 0. We examine the effect of popular F 0 determination methods on the interpretation of neuronal and astrocyte activity in a single dataset of rats trained to self-administer intravenous infusions of cocaine and compare them with an F 0-independent wavelet ridgewalking event detection approach. We find that the choice of the processing method has a profound impact on the interpretation of widefield imaging results. All of the dF/F 0 thresholding methods tended to introduce spurious events and fragment individual transients, leading to smaller calculated event durations and larger event frequencies. Analysis of simulated datasets confirmed these observations and indicated substantial intermethod variability as to the events classified as significant. Additionally, most dF/F 0 methods on their own were unable to adequately account for bleaching of fluorescence, although the F 0 smooth approach and the wavelet ridgewalking algorithm both did so. In general, the choice of the processing method led to dramatically different quantitative and sometimes opposing qualitative interpretations of the effects of cocaine self-administration both at the level of individual cells and at the level of cell networks. Significantly different distributions of event duration, amplitude, frequency, and network measures were found across the majority of dF/F 0 approaches. The wavelet ridgewalking algorithm broadly outperformed dF/F 0-based methods for both neuron and astrocyte recordings. These results indicate the need for heightened awareness of the limitations and tendencies associated with decisions to use particular Ca2+ image processing pipelines. Both quantification and interpretation of the effects of experimental manipulations are strongly sensitive to such decisions.

5.
J Pharmacol Exp Ther ; 374(2): 241-251, 2020 08.
Article in English | MEDLINE | ID: mdl-32461322

ABSTRACT

Dysregulation of dopamine neurotransmission has been linked to the development of human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND). To investigate the mechanisms underlying this phenomenon, this study used an inducible HIV-1 transactivator of transcription (Tat) transgenic (iTat-tg) mouse model, which demonstrates brain-specific Tat expression induced by administration of doxycycline. We found that induction of Tat expression in the iTat-tg mice for either 7 or 14 days resulted in a decrease (∼30%) in the V max of [3H]dopamine uptake via both the dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex (PFC), which was comparable to the magnitude (∼35%) of the decrease in B max for [3H]WIN 35,428 and [3H]nisoxetine binding to DAT and NET, respectively. The decreased V max was not accompanied by a reduction of total or plasma membrane expression of DAT and NET. Consistent with the decreased V max for DAT and NET in the PFC, the current study also found an increase in the tissue content of DA and dihydroxyphenylacetic acid in the PFC of iTat-tg mice after 7 days' administration of doxycycline. Electrophysiological recordings in layer V pyramidal neurons of the prelimbic cortex from iTat-tg mice found a significant reduction in action potential firing, which was not sensitive to selective inhibitors for DAT and NET, respectively. These findings provide a molecular basis for using the iTat-tg mouse model in the studies of NeuroHIV. Determining the mechanistic basis underlying the interaction between Tat and DAT/NET may reveal novel therapeutic possibilities for preventing the increase in comorbid conditions as well as HAND. SIGNIFICANCE STATEMENT: Human immunodeficiency virus (HIV)-1 infection disrupts dopaminergic neurotransmission, leading to HIV-associated neurocognitive disorders (HANDs). Based on our in vitro and in vivo studies, dopamine uptake via both dopamine and norepinephrine transporters is decreased in the prefrontal cortex of HIV-1 Tat transgenic mice, which is consistent with the increased dopamine and dihydroxyphenylacetic acid contents in this brain region. Thus, these plasma membrane transporters are an important potential target for therapeutic intervention for patients with HAND.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Prefrontal Cortex/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics , Animals , Biological Transport , Gene Expression , Male , Mice , Mice, Transgenic , Neurons/metabolism , Prefrontal Cortex/cytology
6.
Elife ; 82019 09 05.
Article in English | MEDLINE | ID: mdl-31487241

ABSTRACT

Deficient motivation contributes to numerous psychiatric disorders, including withdrawal from drug use, depression, schizophrenia, and others. Nucleus accumbens (NAc) has been implicated in motivated behavior, but it remains unclear whether motivational drive is linked to discrete neurobiological mechanisms within the NAc. To examine this, we profiled cohorts of Sprague-Dawley rats in a test of motivation to consume sucrose. We found that substantial variability in willingness to exert effort for reward was not associated with operant responding under low-effort conditions or stress levels. Instead, effort-based motivation was mirrored by a divergent NAc shell transcriptome with differential regulation at potassium and dopamine signaling genes. Functionally, motivation was inversely related to excitability of NAc principal neurons. Furthermore, neuronal and behavioral outputs associated with low motivation were linked to faster inactivation of a voltage-gated potassium channel, Kv1.4. These results raise the prospect of targeting Kv1.4 gating in psychiatric conditions associated with motivational dysfunction.


Subject(s)
Kv1.4 Potassium Channel/metabolism , Motivation , Neurons/enzymology , Neurons/physiology , Nucleus Accumbens/physiology , Reward , Animals , Rats, Sprague-Dawley
7.
Addict Biol ; 24(2): 170-181, 2019 03.
Article in English | MEDLINE | ID: mdl-29226617

ABSTRACT

Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors reduces cocaine-mediated behaviors and cocaine-evoked dopamine release in the nucleus accumbens (NAc). However, no studies have examined the role of NAc GLP-1 receptors in the reinstatement of cocaine-seeking behavior, an animal model of relapse. Here, we show that systemic infusion of a behaviorally relevant dose of the GLP-1 receptor agonist exendin-4 penetrated the brain and localized with neurons and astrocytes in the NAc. Administration of exendin-4 directly into the NAc core and shell subregions significantly attenuated cocaine priming-induced reinstatement of drug-seeking behavior. These effects were not due to deficits in operant responding or suppression of locomotor activity as intra-accumbal exendin-4 administration had no effect on sucrose-seeking behavior. To determine the effects of GLP-1 receptor activation on neuronal excitability, exendin-4 was bath applied to ex vivo NAc slices from cocaine-experienced and saline-experienced rats following extinction of cocaine-taking behavior. Exendin-4 increased the frequency of action potential firing of NAc core and shell medium spiny neurons in cocaine-experienced rats while no effect was observed in saline controls. In contrast, exendin-4 did not affect the frequency or amplitude of spontaneous excitatory postsynaptic currents or alter the paired-pulse ratios of evoked excitatory postsynaptic currents. These effects were not associated with altered expression of GLP-1 receptors in the NAc following cocaine self-administration. Taken together, these findings indicate that increased activation of GLP-1 receptors in the NAc during cocaine abstinence increases intrinsic, but not synaptic, excitability of medium spiny neurons and is sufficient to reduce cocaine-seeking behavior.


Subject(s)
Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Drug-Seeking Behavior/drug effects , Glucagon-Like Peptide-1 Receptor/physiology , Nucleus Accumbens/physiology , Animals , Conditioning, Operant/drug effects , Exenatide/pharmacology , Extinction, Psychological/drug effects , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Male , Neurons/drug effects , Rats, Sprague-Dawley
8.
J Neurosci ; 38(21): 4846-4858, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29712779

ABSTRACT

Dopamine is critical for processing of reward and etiology of drug addiction. Astrocytes throughout the brain express dopamine receptors, but consequences of astrocytic dopamine receptor signaling are not well established. We found that extracellular dopamine triggered rapid concentration-dependent stellation of astrocytic processes that was not a result of dopamine oxidation but instead relied on both cAMP-dependent and cAMP-independent dopamine receptor signaling. This was accompanied by reduced duration and increased frequency of astrocytic Ca2+ transients, but little effect on astrocytic voltage-gated potassium channel currents. To isolate possible mechanisms underlying these structural and functional changes, we used whole-genome RNA sequencing and found prominent dopamine-induced enrichment of genes containing the CCCTC-binding factor (CTCF) motif, suggesting involvement of chromatin restructuring in the nucleus. CTCF binding to promoter sites bidirectionally regulates gene transcription and depends on activation of poly-ADP-ribose polymerase 1 (PARP1). Accordingly, antagonism of PARP1 occluded dopamine-induced changes, whereas a PARP1 agonist facilitated dopamine-induced changes on its own. These results indicate that astrocyte response to elevated dopamine involves PARP1-mediated CTCF genomic restructuring and concerted expression of gene networks. Our findings propose epigenetic regulation of chromatin landscape as a critical factor in the rapid astrocyte response to dopamine.SIGNIFICANCE STATEMENT Although dopamine is widely recognized for its role in modulating neuronal responses both in healthy and disease states, little is known about dopamine effects at non-neuronal cells in the brain. To address this gap, we performed whole-genome sequencing of astrocytes exposed to elevated extracellular dopamine and combined it with evaluation of effects on astrocyte morphology and function. We demonstrate a temporally dynamic pattern of genomic plasticity that triggers pronounced changes in astrocyte morphology and function. We further show that this plasticity depends on activation of genes sensitive to DNA-binding protein CTCF. Our results propose that a broad pattern of astrocyte responses to dopamine specifically relies on CTCF-dependent gene networks.


Subject(s)
Astrocytes/drug effects , Astrocytes/ultrastructure , CCCTC-Binding Factor/drug effects , CCCTC-Binding Factor/genetics , Dopamine/pharmacology , Animals , CCCTC-Binding Factor/physiology , Calcium Signaling/drug effects , Chromatin/genetics , Chromatin/physiology , Electrophysiological Phenomena/physiology , Gene Expression Regulation/drug effects , Genomics , Poly (ADP-Ribose) Polymerase-1/drug effects , Poly (ADP-Ribose) Polymerase-1/genetics , Potassium Channels, Voltage-Gated/drug effects , RNA/genetics , Rats , Rats, Sprague-Dawley , Sequence Analysis, RNA , Transcriptome/drug effects , Transcriptome/genetics
9.
Mol Ther Methods Clin Dev ; 5: 153-164, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28497073

ABSTRACT

The CRISPR/Cas9 systems have revolutionized the field of genome editing by providing unprecedented control over gene sequences and gene expression in many species, including humans. Lentiviral vectors (LVs) are one of the primary delivery platforms for the CRISPR/Cas9 system due to their ability to accommodate large DNA payloads and sustain robust expression in a wide range of dividing and non-dividing cells. However, long-term expression of LV-delivered Cas9/guide RNA may lead to undesirable off-target effects characterized by non-specific RNA-DNA interactions and off-target DNA cleavages. Integrase-deficient lentiviral vectors (IDLVs) present an attractive means for delivery of CRISPR/Cas9 components because: (1) they are capable of transducing a broad range of cells and tissues, (2) have superior packaging capacity compared to other vectors (e.g., adeno-associated viral vectors), and (3) they are expressed transiently and demonstrate very weak integration capability. In this manuscript, we aimed to establish IDLVs as a means for safe and efficient delivery of CRISPR/Cas9. To this end, we developed an all-in-one vector cassette with increased production efficacy and demonstrated that CRISPR/Cas9 delivered by the improved IDLV vectors can mediate rapid and robust gene editing in human embryonic kidney (HEK293T) cells and post-mitotic brain neurons in vivo, via transient expression and with higher gene-targeting specificity than the corresponding integrase-competent vectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...