Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cell Rep ; 42(6): 112561, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37243590

ABSTRACT

Glioblastoma (GBM) stem cells (GSCs) display phenotypic and molecular features reminiscent of normal neural stem cells and exhibit a spectrum of cell cycle states (dormant, quiescent, proliferative). However, mechanisms controlling the transition from quiescence to proliferation in both neural stem cells (NSCs) and GSCs are poorly understood. Elevated expression of the forebrain transcription factor FOXG1 is often observed in GBMs. Here, using small-molecule modulators and genetic perturbations, we identify a synergistic interaction between FOXG1 and Wnt/ß-catenin signaling. Increased FOXG1 enhances Wnt-driven transcriptional targets, enabling highly efficient cell cycle re-entry from quiescence; however, neither FOXG1 nor Wnt is essential in rapidly proliferating cells. We demonstrate that FOXG1 overexpression supports gliomagenesis in vivo and that additional ß-catenin induction drives accelerated tumor growth. These data indicate that elevated FOXG1 cooperates with Wnt signaling to support the transition from quiescence to proliferation in GSCs.


Subject(s)
Forkhead Transcription Factors , Glioblastoma , Wnt Signaling Pathway , Humans , beta Catenin/metabolism , Cell Division , Cell Proliferation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Glioblastoma/pathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism
2.
Cell Stem Cell ; 29(3): 355-371.e10, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245467

ABSTRACT

Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.


Subject(s)
Liver Transplantation , Animals , Bile Ducts/pathology , Epithelial Cells/pathology , Fibrosis , Humans , Living Donors , Mice
3.
J Hepatol ; 74(4): 860-872, 2021 04.
Article in English | MEDLINE | ID: mdl-33221352

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a cancer of the hepatic bile ducts that is rarely resectable and is associated with poor prognosis. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is known to signal via its receptor fibroblast growth factor-inducible 14 (Fn14) and induce cholangiocyte and myofibroblast proliferation in liver injury. We aimed to characterise its role in CCA. METHODS: The expression of the TWEAK ligand and Fn14 receptor was assessed immunohistochemically and by bulk RNA and single cell transcriptomics of human liver tissue. Spatiotemporal dynamics of pathway regulation were comprehensively analysed in rat and mouse models of thioacetamide (TAA)-mediated CCA. Flow cytometry, qPCR and proteomic analyses of CCA cell lines and conditioned medium experiments with primary macrophages were performed to evaluate the downstream functions of TWEAK/Fn14. In vivo pathway manipulation was assessed via TWEAK overexpression in NICD/AKT-induced CCA or genetic Fn14 knockout during TAA-mediated carcinogenesis. RESULTS: Our data reveal TWEAK and Fn14 overexpression in multiple human CCA cohorts, and Fn14 upregulation in early TAA-induced carcinogenesis. TWEAK regulated the secretion of factors from CC-SW-1 and SNU-1079 CCA cells, inducing polarisation of proinflammatory CD206+ macrophages. Pharmacological blocking of the TWEAK downstream target chemokine monocyte chemoattractant protein 1 (MCP-1 or CCL2) significantly reduced CCA xenograft growth, while TWEAK overexpression drove cancer-associated fibroblast proliferation and collagen deposition in the tumour niche. Genetic Fn14 ablation significantly reduced inflammatory, fibrogenic and ductular responses during carcinogenic TAA-mediated injury. CONCLUSION: These novel data provide evidence for the action of TWEAK/Fn14 on macrophage recruitment and phenotype, and cancer-associated fibroblast proliferation in CCA. Targeting TWEAK/Fn14 and its downstream signals may provide a means to inhibit CCA niche development and tumour growth. LAY SUMMARY: Cholangiocarcinoma is an aggressive, chemotherapy-resistant liver cancer. Interactions between tumour cells and cells that form a supportive environment for the tumour to grow are a source of this aggressiveness and resistance to chemotherapy. Herein, we describe interactions between tumour cells and their supportive environment via a chemical messenger, TWEAK and its receptor Fn14. TWEAK/Fn14 alters the recruitment and type of immune cells in tumours, increases the growth of cancer-associated fibroblasts in the tumour environment, and is a potential target to reduce tumour formation.


Subject(s)
Bile Duct Neoplasms , Chemokine CCL2/metabolism , Cholangiocarcinoma , Cytokine TWEAK/metabolism , Fibroblast Growth Factors/metabolism , Animals , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Drug Discovery , Humans , Mice , Rats , Signal Transduction , Tumor Microenvironment , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
4.
J Hepatol ; 73(2): 349-360, 2020 08.
Article in English | MEDLINE | ID: mdl-32169610

ABSTRACT

BACKGROUND & AIM: Following acetaminophen (APAP) overdose, acute liver injury (ALI) can occur in patients that present too late for N-acetylcysteine treatment, potentially leading to acute liver failure, systemic inflammation, and death. Macrophages influence the progression and resolution of ALI due to their innate immunological function and paracrine activity. Syngeneic primary bone marrow-derived macrophages (BMDMs) were tested as a cell-based therapy in a mouse model of APAP-induced ALI (APAP-ALI). METHODS: Several phenotypically distinct BMDM populations were delivered intravenously to APAP-ALI mice when hepatic necrosis was established, and then evaluated based on their effects on injury, inflammation, immunity, and regeneration. In vivo phagocytosis assays were used to interrogate the phenotype and function of alternatively activated BMDMs (AAMs) post-injection. Finally, primary human AAMs sourced from healthy volunteers were evaluated in immunocompetent APAP-ALI mice. RESULTS: BMDMs rapidly localised to the liver and spleen within 4 h of administration. Injection of AAMs specifically reduced hepatocellular necrosis, HMGB1 translocation, and infiltrating neutrophils following APAP-ALI. AAM delivery also stimulated proliferation in hepatocytes and endothelium, and reduced levels of several circulating proinflammatory cytokines within 24 h. AAMs displayed a high phagocytic activity both in vitro and in injured liver tissue post-injection. Crosstalk with the host innate immune system was demonstrated by reduced infiltrating host Ly6Chi macrophages in AAM-treated mice. Importantly, therapeutic efficacy was partially recapitulated using clinical-grade primary human AAMs in immunocompetent APAP-ALI mice, underscoring the translational potential of these findings. CONCLUSION: We identify that AAMs have value as a cell-based therapy in an experimental model of APAP-ALI. Human AAMs warrant further evaluation as a potential cell-based therapy for APAP overdose patients with established liver injury. LAY SUMMARY: After an overdose of acetaminophen (paracetamol), some patients present to hospital too late for the current antidote (N-acetylcysteine) to be effective. We tested whether macrophages, an injury-responsive leukocyte that can scavenge dead/dying cells, could serve as a cell-based therapy in an experimental model of acetaminophen overdose. Injection of alternatively activated macrophages rapidly reduced liver injury and reduced several mediators of inflammation. Macrophages show promise to serve as a potential cell-based therapy for acute liver injury.


Subject(s)
Acetaminophen/poisoning , Cell- and Tissue-Based Therapy/methods , Chemical and Drug Induced Liver Injury , Macrophages , Paracrine Communication/immunology , Animals , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cytokines/blood , Disease Models, Animal , Humans , Immunity, Innate , Intercellular Signaling Peptides and Proteins , Liver Regeneration/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Phagocytosis , Treatment Outcome
5.
Mol Cell ; 71(1): 89-102.e5, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29979971

ABSTRACT

Accessible chromatin is important for RNA polymerase II recruitment and transcription initiation at eukaryotic promoters. We investigated the mechanistic links between promoter DNA sequence, nucleosome positioning, and transcription. Our results indicate that positioning of the transcription start site-associated +1 nucleosome in yeast is critical for efficient TBP binding and is driven by two key factors, the essential chromatin remodeler RSC and a small set of ubiquitous general regulatory factors (GRFs). Our findings indicate that the strength and directionality of RSC action on promoter nucleosomes depends on the arrangement and proximity of two specific DNA motifs. This, together with the effect on nucleosome position observed in double depletion experiments, suggests that, despite their widespread co-localization, RSC and GRFs predominantly act through independent signals to generate accessible chromatin. Our results provide mechanistic insight into how the promoter DNA sequence instructs trans-acting factors to control nucleosome architecture and stimulate transcription initiation.


Subject(s)
Chromatin Assembly and Disassembly , Nucleosomes/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , Nucleosomes/genetics , RNA Polymerase II/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
Article in English | MEDLINE | ID: mdl-29786565

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in developed countries. An in vitro NAFLD model would permit mechanistic studies and enable high-throughput therapeutic screening. While hepatic cancer-derived cell lines are a convenient, renewable resource, their genomic, epigenomic and functional alterations mean their utility in NAFLD modelling is unclear. Additionally, the epigenetic mark 5-hydroxymethylcytosine (5hmC), a cell lineage identifier, is rapidly lost during cell culture, alongside expression of the Ten-eleven-translocation (TET) methylcytosine dioxygenase enzymes, restricting meaningful epigenetic analysis. Hepatocyte-like cells (HLCs) derived from human embryonic stem cells can provide a non-neoplastic, renewable model for liver research. Here, we have developed a model of NAFLD using HLCs exposed to lactate, pyruvate and octanoic acid (LPO) that bear all the hallmarks, including 5hmC profiles, of liver functionality. We exposed HLCs to LPO for 48 h to induce lipid accumulation. We characterized the transcriptome using RNA-seq, the metabolome using ultra-performance liquid chromatography-mass spectrometry and the epigenome using 5-hydroxymethylation DNA immunoprecipitation (hmeDIP) sequencing. LPO exposure induced an NAFLD phenotype in HLCs with transcriptional and metabolomic dysregulation consistent with those present in human NAFLD. HLCs maintain expression of the TET enzymes and have a liver-like epigenome. LPO exposure-induced 5hmC enrichment at lipid synthesis and transport genes. HLCs treated with LPO recapitulate the transcriptional and metabolic dysregulation seen in NAFLD and additionally retain TET expression and 5hmC. This in vitro model of NAFLD will be useful for future mechanistic and therapeutic studies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.


Subject(s)
Hepatocytes/physiology , Non-alcoholic Fatty Liver Disease/physiopathology , Transcriptome/physiology , Caprylates/pharmacology , Humans , Lactic Acid/pharmacology , Non-alcoholic Fatty Liver Disease/chemically induced , Pyruvic Acid/pharmacology
7.
Elife ; 72018 04 11.
Article in English | MEDLINE | ID: mdl-29638216

ABSTRACT

CRISPR/Cas9 can be used for precise genetic knock-in of epitope tags into endogenous genes, simplifying experimental analysis of protein function. However, Cas9-assisted epitope tagging in primary mammalian cell cultures is often inefficient and reliant on plasmid-based selection strategies. Here, we demonstrate improved knock-in efficiencies of diverse tags (V5, 3XFLAG, Myc, HA) using co-delivery of Cas9 protein pre-complexed with two-part synthetic modified RNAs (annealed crRNA:tracrRNA) and single-stranded oligodeoxynucleotide (ssODN) repair templates. Knock-in efficiencies of ~5-30%, were achieved without selection in embryonic stem (ES) cells, neural stem (NS) cells, and brain-tumor-derived stem cells. Biallelic-tagged clonal lines were readily derived and used to define Olig2 chromatin-bound interacting partners. Using our novel web-based design tool, we established a 96-well format pipeline that enabled V5-tagging of 60 different transcription factors. This efficient, selection-free and scalable epitope tagging pipeline enables systematic surveys of protein expression levels, subcellular localization, and interactors across diverse mammalian stem cells.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Epitope Mapping/methods , High-Throughput Screening Assays , Ribonucleoproteins/metabolism , Stem Cells/cytology , Transcription Factors/metabolism , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , CRISPR-Associated Protein 9/genetics , Cells, Cultured , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Editing , Humans , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Oligodeoxyribonucleotides/genetics , RNA, Guide, Kinetoplastida , Ribonucleoproteins/genetics , Stem Cells/metabolism , Transcription Factors/genetics
9.
Nat Commun ; 9(1): 1020, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523787

ABSTRACT

Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFß production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFß-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFß as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies.


Subject(s)
Bile Ducts/injuries , Bile Ducts/pathology , Cellular Senescence/physiology , Cholangitis, Sclerosing/pathology , Liver Cirrhosis, Biliary/pathology , Liver/pathology , Regeneration/physiology , Animals , Cells, Cultured , Cholangitis, Sclerosing/therapy , Collagen/metabolism , Disease Models, Animal , Female , Hepatocytes/pathology , Humans , Keratin-19/genetics , Liver Cirrhosis, Biliary/therapy , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myofibroblasts/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Transforming Growth Factor beta1/antagonists & inhibitors , Transforming Growth Factor beta1/metabolism
10.
Assay Drug Dev Technol ; 16(1): 51-63, 2018 01.
Article in English | MEDLINE | ID: mdl-29345979

ABSTRACT

There is a large amount of information in brightfield images that was previously inaccessible by using traditional microscopy techniques. This information can now be exploited by using machine-learning approaches for both image segmentation and the classification of objects. We have combined these approaches with a label-free assay for growth and differentiation of leukemic colonies, to generate a novel platform for phenotypic drug discovery. Initially, a supervised machine-learning algorithm was used to identify in-focus colonies growing in a three-dimensional (3D) methylcellulose gel. Once identified, unsupervised clustering and principle component analysis of texture-based phenotypic profiles were applied to group similar phenotypes. In a proof-of-concept study, we successfully identified a novel phenotype induced by a compound that is currently in clinical trials for the treatment of leukemia. We believe that our platform will be of great benefit for the utilization of patient-derived 3D cell culture systems for both drug discovery and diagnostic applications.


Subject(s)
Drug Discovery , Imaging, Three-Dimensional , Leukemia/diagnostic imaging , Leukemia/drug therapy , Machine Learning , Phenotype , Antineoplastic Agents/therapeutic use , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Humans , Particle Size , Surface Properties , THP-1 Cells
11.
J Immunol ; 200(3): 1169-1187, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29263216

ABSTRACT

The disposal of apoptotic bodies by professional phagocytes is crucial to effective inflammation resolution. Our ability to improve the disposal of apoptotic bodies by professional phagocytes is impaired by a limited understanding of the molecular mechanisms that regulate the engulfment and digestion of the efferocytic cargo. Macrophages are professional phagocytes necessary for liver inflammation, fibrosis, and resolution, switching their phenotype from proinflammatory to restorative. Using sterile liver injury models, we show that the STAT3-IL-10-IL-6 axis is a positive regulator of macrophage efferocytosis, survival, and phenotypic conversion, directly linking debris engulfment to tissue repair.


Subject(s)
Interleukin-10/metabolism , Interleukin-6/metabolism , Liver Cirrhosis/pathology , Liver/injuries , Macrophages/immunology , Phagocytosis/immunology , STAT3 Transcription Factor/metabolism , Adoptive Transfer , Animals , Apoptosis/immunology , Humans , Liver/pathology , Macrophages/transplantation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Necrosis/immunology , Regeneration/physiology , Zebrafish/embryology
12.
J Neurosci ; 38(3): 613-630, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29196317

ABSTRACT

During embryonic development, axons extend over long distances to establish functional connections. In contrast, axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing CNS regeneration. Here, we performed one of the first miRNome-wide functional miRNA screens to identify miRNAs with robust effects on axon growth. High-content screening identified miR-135a and miR-135b as potent stimulators of axon growth and cortical neuron migration in vitro and in vivo in male and female mice. Intriguingly, both of these developmental effects of miR-135s relied in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon growth and regeneration. These results prompted us to test the effect of miR-135s on axon regeneration after injury. Our results show that intravitreal application of miR-135s facilitates retinal ganglion cell (RGC) axon regeneration after optic nerve injury in adult mice in part by repressing KLF4. In contrast, depletion of miR-135s further reduced RGC axon regeneration. Together, these data identify a novel neuronal role for miR-135s and the miR-135-KLF4 pathway and highlight the potential of miRNAs as tools for enhancing CNS axon regeneration.SIGNIFICANCE STATEMENT Axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing regeneration. By performing an miRNome-wide functional screen, our studies identify miR-135s as stimulators of axon growth and neuron migration and show that intravitreal application of these miRNAs facilitates CNS axon regeneration after nerve injury in adult mice. Intriguingly, these developmental and regeneration-promoting effects rely in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon regeneration. Our data identify a novel neuronal role for the miR-135-KLF4 pathway and support the idea that miRNAs can be used for enhancing CNS axon regeneration.


Subject(s)
Gene Expression Regulation/physiology , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/metabolism , Nerve Regeneration/physiology , Animals , Axons/metabolism , Female , Humans , Kruppel-Like Factor 4 , Male , Mice , Mice, Inbred C57BL , Retinal Ganglion Cells/physiology
13.
Nature ; 547(7663): 350-354, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28700576

ABSTRACT

After liver injury, regeneration occurs through self-replication of hepatocytes. In severe liver injury, hepatocyte proliferation is impaired-a feature of human chronic liver disease. It is unclear whether other liver cell types can regenerate hepatocytes. Here we use two independent systems to impair hepatocyte proliferation during liver injury to evaluate the contribution of non-hepatocytes to parenchymal regeneration. First, loss of ß1-integrin in hepatocytes with liver injury triggered a ductular reaction of cholangiocyte origin, with approximately 25% of hepatocytes being derived from a non-hepatocyte origin. Second, cholangiocytes were lineage traced with concurrent inhibition of hepatocyte proliferation by ß1-integrin knockdown or p21 overexpression, resulting in the significant emergence of cholangiocyte-derived hepatocytes. We describe a model of combined liver injury and inhibition of hepatocyte proliferation that causes physiologically significant levels of regeneration of functional hepatocytes from biliary cells.


Subject(s)
Bile Ducts, Intrahepatic/cytology , Hepatocytes/pathology , Liver Regeneration , Liver/cytology , Liver/pathology , Stem Cells/cytology , Animals , Cell Lineage , Cell Proliferation , Female , Integrin beta1/genetics , Liver/injuries , Liver Diseases/pathology , Male , Mice , Mice, Inbred C57BL
14.
NPJ Regen Med ; 2: 14, 2017.
Article in English | MEDLINE | ID: mdl-29302350

ABSTRACT

Chronic liver injury can be caused by viral hepatitis, alcohol, obesity, and metabolic disorders resulting in fibrosis, hepatic scarring, and cirrhosis. Novel therapies are urgently required and previous work has demonstrated that treatment with bone marrow derived macrophages can improve liver regeneration and reduce fibrosis in a murine model of hepatic injury and fibrosis. Here, we describe a protocol whereby pure populations of therapeutic macrophages can be produced in vitro from murine embryonic stem cells on a large scale. Embryonic stem cell derived macrophages display comparable morphology and cell surface markers to bone marrow derived macrophages but our novel imaging technique revealed that their phagocytic index was significantly lower. Differences were also observed in their response to classical induction protocols with embryonic stem cell derived macrophages having a reduced response to lipopolysaccharide and interferon gamma and an enhanced response to IL4 compared to bone marrow derived macrophages. When their therapeutic potential was assessed in a murine, carbon tetrachloride-induced injury and fibrosis model, embryonic stem cell derived macrophages significantly reduced the amount of hepatic fibrosis to 50% of controls, down-regulated the number of fibrogenic myofibroblasts and activated liver progenitor cells. To our knowledge, this is the first study that demonstrates a therapeutic effect of macrophages derived in vitro from pluripotent stem cells in a model of liver injury. We also found that embryonic stem cell derived macrophages repopulated the Kupffer cell compartment of clodronate-treated mice more efficiently than bone marrow derived macrophages, and expressed comparatively lower levels of Myb and Ccr2, indicating that their phenotype is more comparable to tissue-resident rather than monocyte-derived macrophages.

16.
EMBO J ; 36(3): 274-290, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27979920

ABSTRACT

An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA-dominated/TATA-box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA-like promoters that depend on the same activator Hsf1. Regulatability is therefore an inherent property of promoter class. Further analyses show that SAGA/TATA-box promoters are more dynamic because TATA-binding protein recruitment through SAGA is susceptible to removal by Mot1. In addition, the nucleosome configuration upon activator depletion shifts on SAGA/TATA-box promoters and seems less amenable to preinitiation complex formation. The results explain the fundamental difference between housekeeping and regulatable genes, revealing an additional facet of combinatorial control: an activator can elicit a different response dependent on core promoter class.


Subject(s)
Gene Expression Regulation, Fungal , Genes, Essential , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Transcription Factor TFIID/genetics , Transcriptional Activation , Adenosine Triphosphatases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , TATA-Binding Protein Associated Factors/metabolism , TATA-Box Binding Protein/metabolism
17.
Mol Cell Neurosci ; 80: 198-207, 2017 04.
Article in English | MEDLINE | ID: mdl-27825983

ABSTRACT

Patients diagnosed with glioblastoma (GBM) continue to face a bleak prognosis. It is critical that new effective therapeutic strategies are developed. GBM stem cells have molecular hallmarks of neural stem and progenitor cells and it is possible to propagate both non-transformed normal neural stem cells and GBM stem cells, in defined, feeder-free, adherent culture. These primary stem cell lines provide an experimental model that is ideally suited to cell-based drug discovery or genetic screens in order to identify tumour-specific vulnerabilities. For many solid tumours, including GBM, the genetic disruptions that drive tumour initiation and growth have now been catalogued. CRISPR/Cas-based genome editing technologies have recently emerged, transforming our ability to functionally annotate the human genome. Genome editing opens prospects for engineering precise genetic changes in normal and GBM-derived neural stem cells, which will provide more defined and reliable genetic models, with critical matched pairs of isogenic cell lines. Generation of more complex alleles such as knock in tags or fluorescent reporters is also now possible. These new cellular models can be deployed in cell-based phenotypic drug discovery (PDD). Here we discuss the convergence of these advanced technologies (iPS cells, neural stem cell culture, genome editing and high content phenotypic screening) and how they herald a new era in human cellular genetics that should have a major impact in accelerating glioblastoma drug discovery.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Drug Discovery/methods , Gene Editing , Glioblastoma/drug therapy , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Human/genetics , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Induced Pluripotent Stem Cells/metabolism
18.
J Am Soc Nephrol ; 27(11): 3345-3355, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27020854

ABSTRACT

Extracellular vesicles (ECVs) facilitate intercellular communication along the nephron, with the potential to change the function of the recipient cell. However, it is not known whether this is a regulated process analogous to other signaling systems. We investigated the potential hormonal regulation of ECV transfer and report that desmopressin, a vasopressin analogue, stimulated the uptake of fluorescently loaded ECVs into a kidney collecting duct cell line (mCCDC11) and into primary cells. Exposure of mCCDC11 cells to ECVs isolated from cells overexpressing microRNA-503 led to downregulated expression of microRNA-503 target genes, but only in the presence of desmopressin. Mechanistically, ECV entry into mCCDC11 cells required cAMP production, was reduced by inhibiting dynamin, and was selective for ECVs from kidney tubular cells. In vivo, we measured the urinary excretion and tissue uptake of fluorescently loaded ECVs delivered systemically to mice before and after administration of the vasopressin V2 receptor antagonist tolvaptan. In control-treated mice, we recovered 2.5% of administered ECVs in the urine; tolvaptan increased recovery five-fold and reduced ECV deposition in kidney tissue. Furthermore, in a patient with central diabetes insipidus, desmopressin reduced the excretion of ECVs derived from glomerular and proximal tubular cells. These data are consistent with vasopressin-regulated uptake of ECVs in vivo We conclude that ECV uptake is a specific and regulated process. Physiologically, ECVs are a new mechanism of intercellular communication; therapeutically, ECVs may be a vehicle by which RNA therapy could be targeted to specific cells for the treatment of kidney disease.


Subject(s)
Extracellular Vesicles/physiology , Kidney Tubules, Collecting/cytology , Vasopressins/physiology , Adolescent , Animals , Deamino Arginine Vasopressin/pharmacology , Extracellular Vesicles/drug effects , Humans , Kidney Tubules, Collecting/ultrastructure , Male , Mice , Rats
19.
J Exp Med ; 212(13): 2223-34, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26642852

ABSTRACT

Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Disease Progression , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Models, Animal , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Homeodomain Proteins/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Molecular Sequence Data , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
20.
Mol Syst Biol ; 10: 732, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24952590

ABSTRACT

Growth condition perturbation or gene function disruption are commonly used strategies to study cellular systems. Although it is widely appreciated that such experiments may involve indirect effects, these frequently remain uncharacterized. Here, analysis of functionally unrelated Saccharyomyces cerevisiae deletion strains reveals a common gene expression signature. One property shared by these strains is slower growth, with increased presence of the signature in more slowly growing strains. The slow growth signature is highly similar to the environmental stress response (ESR), an expression response common to diverse environmental perturbations. Both environmental and genetic perturbations result in growth rate changes. These are accompanied by a change in the distribution of cells over different cell cycle phases. Rather than representing a direct expression response in single cells, both the slow growth signature and ESR mainly reflect a redistribution of cells over different cell cycle phases, primarily characterized by an increase in the G1 population. The findings have implications for any study of perturbation that is accompanied by growth rate changes. Strategies to counter these effects are presented and discussed.


Subject(s)
Gene Deletion , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Cell Cycle , Culture Media , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genes, Fungal , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/cytology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...