Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 18(7): 1750-1760, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31107486

ABSTRACT

Flavylium cations serve as models for the chemical and photochemical reactivity of anthocyanins, the natural plant pigment responsible for many of the red, blue and purple colors of fruits and flowers. Likewise, pyranoflavylium cations serve as models of the fundamental chromophoric moiety of pyranoanthocyanins, molecules that can form from reactions of grape anthocyanins in red wines during their maturation. In the present work, hybrid pigments are prepared by the adsorption of a series of five synthetic flavylium cations (FL) and five synthetic pyranoflavylium cations (PFL) on sepiolite clay (SEP). The FL are smaller in size than the PFL, but both can in principle fit into the tunnels and/or external grooves (with dimensions of 3.7 × 10.6 Å) of SEP. Measurements of the fluorescence quantum yields of the adsorbed dyes indicate that they are at least as fluorescent as in acidic acetonitrile solution, and in a few cases substantially more fluorescent. The observation of biexponential fluorescence decays is consistent with emission from dye molecules adsorbed at two distinct sites, presumably tunnels and grooves. These hybrid materials also have improved properties in terms of stability of the color in contact with pH 10 aqueous solution and resistance to thermal degradation of the dye. SEP thus appears to be a promising substrate for the development of highly fluorescent flavylium or pyranoflavylium cation-derived hybrid pigments with improved color and thermal stability.

2.
Chem Commun (Camb) ; 54(37): 4724-4727, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29683156

ABSTRACT

We studied the effect of human serum albumin protein capped spherical nanosilver on the nanoparticle stability upon peroxyl radical oxidation. The nanoparticle-protein composite is less prone to oxidation compared to the individual components. However, higher concentrations of hydrogen peroxide were formed in the nanoparticle-protein system.

3.
ACS Omega ; 3(7): 7673-7680, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-31458917

ABSTRACT

The local environments within an amphiphilic polymer shell wrapped around lanthanide-doped upconverting nanoparticles were probed using steady-state and time-resolved fluorescence spectroscopy techniques. Emission lifetime measurements of pyrene chromophores trapped within the polymer shell reveal that there are at least two environments, where the organic pyrene molecules are encapsulated in hydrophobic environments that have lower polarity than in water. The migration of pyrene chromophores from their initial location to another location was also observed, demonstrating that the polymeric shell provides both hydrophobicity and mobility for entrapped molecules. These results offer insight into what outcomes can be expected when chemical reactions are carried out in these nanoassemblies, especially if they are to be used as nanoreactors for synthesis or delivery vehicles for therapeutics.

4.
J Org Chem ; 82(12): 6006-6021, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28534631

ABSTRACT

Anthrols 2-7 were synthesized and their photochemical reactivity investigated by irradiations in aq CH3OH. Upon excitation with visible light (λ > 400 nm) in methanolic solutions, they undergo photodehydration or photodeamination and deliver methyl ethers, most probably via quinone methides (QMs), with methanolysis quantum efficiencies ΦR = 0.02-0.3. Photophysical properties of 2-7 were determined by steady-state fluorescence and time-correlated single photon counting. Generally, anthrols 2-7 are highly fluorescent in aprotic solvents (ΦF = 0.5-0.9), whereas in aqueous solutions the fluorescence is quenched due to excited-state proton transfer (ESPT) to solvent. The exception is amine 4 that undergoes excited-state intramolecular proton transfer (ESIPT) in neat CH3CN where photodeamination is probably coupled to ESIPT. Photodehydration may take place via ESIPT (or ESPT) that is coupled to dehydration or via a hitherto undisclosed pathway that involves photoionization and deprotonation of radical cation, followed by homolytic cleavage of the alcohol OH group from the phenoxyl radical. QMs were detected by laser flash photolysis and their reactivity with nucleophiles investigated. Biological investigation of 2-5 on human cancer cell lines showed enhancement of antiproliferative effect upon exposure of cells to irradiation by visible light, probably due to formation of electrophilic species such as QMs.

SELECTION OF CITATIONS
SEARCH DETAIL