Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 59(7): 1681-1695, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311832

ABSTRACT

African science has substantial potential, yet it grapples with significant challenges. Here we describe the establishment of the Biomedical Science Research and Training Centre (BioRTC) in Yobe State, Northeast Nigeria, as a case study of a hub fostering on-continent research and describe strategies to overcome current barriers. We detail the steps taken to establish BioRTC, emphasising the critical importance of stakeholder engagement, community involvement, resource optimisation and collaborations. With its state-of-the-art facilities and commitment to training African scientists, BioRTC is poised to significantly advance neuroscience research and training in the region. Although we are in the early stages of our journey, our model, emphasizing open access and inclusivity, offers a replicable blueprint for neuroscience research development in similar resource-limited settings, promising to enrich the global neuroscience community. We invite the support and collaboration of those who share our vision and believe in our potential.


Subject(s)
Biomedical Research , Neurosciences , Nigeria , Neurosciences/education
2.
Essays Biochem ; 66(7): 1001-1011, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36373666

ABSTRACT

Tau is an intrinsically disordered protein that has the ability to self-assemble to form paired helical and straight filaments in Alzheimer's disease, as well as the ability to form additional distinct tau filaments in other tauopathies. In the presence of microtubules, tau forms an elongated form associated with tubulin dimers via a series of imperfect repeats known as the microtubule binding repeats. Tau has recently been identified to have the ability to phase separate in vitro and in cells. The ability of tau to adopt a wide variety of conformations appears fundamental both to its biological function and also its association with neurodegenerative diseases. The recently highlighted involvement of low-complexity domains in liquid-liquid phase separation provides a critical link between the soluble function and the insoluble dysfunctional properties of tau.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/chemistry , tau Proteins/metabolism , Neurofibrillary Tangles/metabolism , Alzheimer Disease/metabolism , Microtubules/metabolism , Tubulin/metabolism
3.
J Mol Biol ; 434(19): 167785, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35961386

ABSTRACT

A characteristic hallmark of Alzheimer's Disease (AD) is the pathological aggregation and deposition of tau into paired helical filaments (PHF) in neurofibrillary tangles (NFTs). Oxidative stress is an early event during AD pathogenesis and is associated with tau-mediated AD pathology. Oxidative environments can result in the formation of covalent dityrosine crosslinks that can increase protein stability and insolubility. Dityrosine cross-linking has been shown in Aß plaques in AD and α-synuclein aggregates in Lewy bodies in ex vivo tissue sections, and this modification may increase the insolubility of these aggregates and their resistance to degradation. Using the PHF-core tau fragment (residues 297 - 391) as a model, we have previously demonstrated that dityrosine formation traps tau assemblies to reduce further elongation. However, it is unknown whether dityrosine crosslinks are found in tau deposits in vivo in AD and its relevance to disease mechanism is unclear. Here, using transmission electron microscope (TEM) double immunogold-labelling, we reveal that neurofibrillary NFTs in AD are heavily decorated with dityrosine crosslinks alongside tau. Single immunogold-labelling TEM and fluorescence spectroscopy revealed the presence of dityrosine on AD brain-derived tau oligomers and fibrils. Using the tau (297-391) PHF-core fragment as a model, we further showed that prefibrillar tau species are more amenable to dityrosine crosslinking than tau fibrils. Dityrosine formation results in heat and SDS stability of oxidised prefibrillar and fibrillar tau assemblies. This finding has implications for understanding the mechanism governing the insolubility and toxicity of tau assemblies in vivo.


Subject(s)
Alzheimer Disease , Neurofibrillary Tangles , Tyrosine , tau Proteins , Alzheimer Disease/metabolism , Humans , Neurofibrillary Tangles/chemistry , Protein Conformation, alpha-Helical , Tyrosine/analogs & derivatives , Tyrosine/chemistry , alpha-Synuclein/chemistry , tau Proteins/chemistry
4.
Front Neurol ; 11: 590754, 2020.
Article in English | MEDLINE | ID: mdl-33281730

ABSTRACT

Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.

5.
Int J Audiol ; 48(5): 271-6, 2009 May.
Article in English | MEDLINE | ID: mdl-19842802

ABSTRACT

Hearing threshold sound pressure levels were measured for the Sennheiser HDA 280 audiometric earphone. Hearing thresholds were measured for 25 normal-hearing test subjects at the 11 audiometric test frequencies from 125 Hz to 8000 Hz. Sennheiser HDA 280 is a supra-aural earphone that may be seen as a substitute for the classical Telephonics TDH 39. The results are given as the equivalent threshold sound pressure level (ETSPL) measured in an acoustic coupler specified in IEC 60318-3. The results are in good agreement with an independent investigation from PTB, Braunschweig, Germany. From acoustic laboratory measurements ETSPL values are calculated for the ear simulator specified in IEC 60318-1. Fitting of earphone and coupler is discussed. The data may be used for a future update of the RETSPL standard for supra-aural audiometric earphones, ISO 389-1.


Subject(s)
Audiometry/instrumentation , Pressure , Sound , Acoustics/instrumentation , Adult , Audiometry/methods , Auditory Threshold , Ear , Electronics/instrumentation , Electronics/methods , Female , Functional Laterality , Humans , Male , Sex Characteristics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...