Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Antioxidants (Basel) ; 13(5)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38790618

During our search for natural resources that can inhibit lipid droplet accumulation (LDA) and potentially prevent metabolic dysfunction-associated fatty liver disease (MAFLD) and its progressive stages, such as metabolic dysfunction-associated steatohepatitis (MASH), eight bean extracts (BE1-BE8) were tested for their ability to inhibit lipid accumulation and oxidation in hepatocytes. Substantial inhibitory effects on LDA with bean extracts (BEs) BE2, BE4, BE5, and BE8 were demonstrated. An advanced lipidomic approach was used to quantify the accumulation and inhibition of intracellular triacylglycerol (TAG) and its oxidized species, TAG hydroperoxide (TGOOH), in hepatocytes under fatty acid-loading conditions. The results show that the antioxidants BE2 and BE8 are potential candidates for regulating TAG and TGOOH accumulation in fatty acid-induced lipid droplets (LDs). This study suggests that bean-based foods inhibit LDs formation by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. The metabolic profiling of BEs revealed that BE2 and BE8 contained polyphenolic compounds. These may be potential resources for the development of functional foods and drug discovery targeting MAFLD/MASH.

2.
Molecules ; 28(24)2023 Dec 09.
Article En | MEDLINE | ID: mdl-38138514

Targeting bioactive compounds to prevent lipid droplet accumulation in the liver, we explored an antioxidative extract from vanilla bean (Vainilla planifolia) after chemo-selective derivatization through heating and acid modification. The chemical analysis of vanilla bean extract through chemoselective derivatization resulted in the identification of sixteen compounds (34-50) using LC-MS/MS analysis. A ß-carboline alkaloid with a piperidine C-ring and a vanillin moiety at C-1 (34) was identified by molecular networking and diagnostic fragmentation filtering approaches. ß-carboline alkaloid 34 exhibited significant inhibitory activity of lipid droplet accumulation (LDAI) in oleic acid-loaded hepatocellular carcinoma HepG2 cells. The LDAI activity was associated with both activation of lipolysis and suppression of lipogenesis in the cells. The study indicates that crude plant extracts, following chemoselective derivatization, may contain bioactive compounds that could be beneficial in preventing hepatosteatosis and could serve as a source of lead compounds for drug development. This approach may be useful to investigate other mixtures of natural products and food resources.


Alkaloids , Vanilla , Humans , Vanilla/chemistry , Chromatography, Liquid , Lipid Droplets , Tandem Mass Spectrometry , Alkaloids/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hep G2 Cells , Carbolines/pharmacology
3.
Pharmaceuticals (Basel) ; 15(5)2022 May 05.
Article En | MEDLINE | ID: mdl-35631404

Lipid droplet accumulation (LDA) in hepatocytes is the initial stage of nonalcoholic fatty liver disease (NAFLD). In the search for natural compounds for the prevention of NAFLD, a series of ß-carboline alkaloid derivatives, inspired by flazin and its derivative, newly identified in Crassostrea gigas Thunberg. extracts, were examined for LDA inhibition (LDAI) activity in oleic acid-loaded hepatocytes (HepG2). Eight compounds with a piperidine or pyridine C-ring were chemically synthesized (1-8). Among them, compounds 2 and 4 (flazin) with a carboxy group at C-3 and furfuryl alcohol moiety at C-1 showed low cytotoxicity and they exhibited significant LDAI activity. Compound 2 with piperidine C-ring was identified for the first time in C. gigas extract, and ameliorated the lipid accumulation with the LDAI value of 25.4%. Active compounds 2 and 4 significantly inhibited triacylglycerol species accumulation in cells. These compounds upregulated ATGL and downregulated SREBP1, FASN, and SCD1 genes, suggesting that they activated lipolysis and suppressed lipogenesis, respectively. These results suggest that ß-carboline alkaloids, especially compounds 2 and 4, might be potentially useful for preventing NAFLD.

...