Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Genet Med ; 26(6): 101102, 2024 Jun.
Article En | MEDLINE | ID: mdl-38431799

PURPOSE: Genomic medicine can end diagnostic odysseys for patients with complex phenotypes; however, limitations in insurance coverage and other systemic barriers preclude individuals from accessing comprehensive genetics evaluation and testing. METHODS: The Texome Project is a 4-year study that reduces barriers to genomic testing for individuals from underserved and underrepresented populations. Participants with undiagnosed, rare diseases who have financial barriers to obtaining exome sequencing (ES) clinically are enrolled in the Texome Project. RESULTS: We highlight the Texome Project process and describe the outcomes of the first 60 ES results for study participants. Participants received a genetic evaluation, ES, and return of results at no cost. We summarize the psychosocial or medical implications of these genetic diagnoses. Thus far, ES provided molecular diagnoses for 18 out of 60 (30%) of Texome participants. Plus, in 11 out of 60 (18%) participants, a partial or probable diagnosis was identified. Overall, 5 participants had a change in medical management. CONCLUSION: To date, the Texome Project has recruited a racially, ethnically, and socioeconomically diverse cohort. The diagnostic rate and medical impact in this cohort support the need for expanded access to genetic testing and services. The Texome Project will continue reducing barriers to genomic care throughout the future study years.


Exome Sequencing , Genetic Testing , Vulnerable Populations , Humans , Female , Male , Genetic Testing/methods , Adult , Middle Aged , Medically Underserved Area , Exome/genetics , Health Services Accessibility , Adolescent , Genomics/methods , Young Adult , Aged
3.
JCI Insight ; 8(17)2023 09 08.
Article En | MEDLINE | ID: mdl-37490345

Nitric oxide (NO) is a critical signaling molecule that has been implicated in the pathogenesis of neurocognitive diseases. Both excessive and insufficient NO production have been linked to pathology. Previously, we have shown that argininosuccinate lyase deficiency (ASLD) is a novel model system to investigate cell-autonomous, nitric oxide synthase-dependent NO deficiency. Humans with ASLD are at increased risk for developing hyperammonemia due to a block in ureagenesis. However, natural history studies have shown that individuals with ASLD have multisystem disease including neurocognitive deficits that can be independent of ammonia. Here, using ASLD as a model of NO deficiency, we investigated the effects of NO on brain endothelial cells in vitro and the blood-brain barrier (BBB) in vivo. Knockdown of ASL in human brain microvascular endothelial cells (HBMECs) led to decreased transendothelial electrical resistance, indicative of increased cell permeability. Mechanistically, treatment with an NO donor or inhibition of Claudin-1 improved barrier integrity in ASL-deficient HBMECs. Furthermore, in vivo assessment of a hypomorphic mouse model of ASLD showed increased BBB leakage, which was partially rescued by NO supplementation. Our results suggest that ASL-mediated NO synthesis is required for proper maintenance of brain microvascular endothelial cell functions as well as BBB integrity.


Argininosuccinic Aciduria , Mice , Animals , Humans , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/metabolism , Argininosuccinic Aciduria/pathology , Nitric Oxide/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Claudins/metabolism , Disease Models, Animal
4.
Mol Genet Metab ; 139(3): 107624, 2023 07.
Article En | MEDLINE | ID: mdl-37348148

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive genetic disorder affecting the biosynthesis of dopamine, a precursor of both norepinephrine and epinephrine, and serotonin. Diagnosis is based on the analysis of CSF or plasma metabolites, AADC activity in plasma and genetic testing for variants in the DDC gene. The exact prevalence of AADC deficiency, the number of patients, and the variant and genotype prevalence are not known. Here, we present the DDC variant (n = 143) and genotype (n = 151) prevalence of 348 patients with AADC deficiency, 121 of whom were previously not reported. In addition, we report 26 new DDC variants, classify them according to the ACMG/AMP/ACGS recommendations for pathogenicity and score them based on the predicted structural effect. The splice variant c.714+4A>T, with a founder effect in Taiwan and China, was the most common variant (allele frequency = 32.4%), and c.[714+4A>T];[714+4A>T] was the most common genotype (genotype frequency = 21.3%). Approximately 90% of genotypes had variants classified as pathogenic or likely pathogenic, while 7% had one VUS allele and 3% had two VUS alleles. Only one benign variant was reported. Homozygous and compound heterozygous genotypes were interpreted in terms of AADC protein and categorized as: i) devoid of full-length AADC, ii) bearing one type of AADC homodimeric variant or iii) producing an AADC protein population composed of two homodimeric and one heterodimeric variant. Based on structural features, a score was attributed for all homodimers, and a tentative prediction was advanced for the heterodimer. Almost all AADC protein variants were pathogenic or likely pathogenic.


Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases , Humans , Prevalence , Dopamine/metabolism , Genotype , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acids/genetics
5.
Clin Chem ; 67(12): 1606-1617, 2021 11 26.
Article En | MEDLINE | ID: mdl-34633032

BACKGROUND: Metabolomics is the study of small molecules to simultaneously identify multiple low molecular weight molecules in a system. Broadly speaking, metabolomics can be subdivided into targeted and untargeted types of analysis, each type having advantages and drawbacks. Targeted metabolomics can quantify analytes but only looks for known or expected analytes related to particular disease(s), whereas untargeted metabolomics is typically nonquantitative but can detect thousands of analytes from an agnostic or nonhypothesis driven perspective, allowing for novel discoveries. CONTENT: One application of metabolomics is the study of inborn errors of metabolism (IEM). The biochemical hallmark of IEMs is decreased concentrations of analytes distal to the enzymatic defect and buildup of analytes proximal to the defect. Metabolomics can detect these changes with one test and is effective in screening for and diagnosis of IEMs. Metabolomics has also been used to study many nonmetabolic diseases such as autism spectrum disorder, various cancers, and multiple congenital anomalies syndromes. Metabolomics has led to the discovery of many novel biomarkers of disease. Recent publications demonstrate how metabolomics can be useful clinically in the diagnosis and management of patients, as well as for research and clinical discovery. SUMMARY: Metabolomics has proved to be a useful tool clinically for screening and diagnostic purposes and from a research perspective for the detection of novel biomarkers. In the future, metabolomics will likely become a routine part of the evaluation for many diseases as either a supplementary test or it may simply replace historical analyses that require several individual tests and sample types.


Abnormalities, Multiple , Autism Spectrum Disorder , Metabolism, Inborn Errors , Biomarkers/analysis , Humans , Mass Screening , Metabolism, Inborn Errors/diagnosis , Metabolomics
...