Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Glycobiology ; 31(10): 1350-1363, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34224567

ABSTRACT

Thraustochytrids, unicellular marine protists, synthesize polyunsaturated fatty acids (PUFAs) and PUFA-containing phospholipids; however, little is known about their glycolipids and their associated metabolism. Here, we report two glycolipids (GL-A, B) and their synthases in Aurantiochytrium limacinum mh0186. Two glycolipids were purified from A. limacinum mh0186, and they were determined by gas chromatography, mass spectrometry and 2D nuclear magnetic resonance to be 3-O-ß-D-glucopyranosyl-stigmasta-5,7,22-triene (GL-A) and 3-O-ß-D-glucopyranosyl-4α-methyl-stigmasta-7,22-diene (GL-B), both of which are sterol ß-glucosides (ß-SGs); the structure of GL-B has not been reported thus far. Seven candidate genes responsible for the synthesis of these ß-SGs were extracted from the draft genome database of A. limacinum using the yeast sterol ß-glucosyltransferase (SGT; EC 2.4.1.173) sequence as a query. Expression analysis using Saccharomyces cerevisiae revealed that two gene products (AlSGT-1 and 2) catalyze the transfer of glucose from uridine diphosphate (UDP)-glucose to sterols, generating sterylglucosides (SGs). Compared to AlSGT-1, AlSGT-2 exhibited wide specificity for sterols and used C4-monomethylsterol to synthesize GL-B. The disruption of alsgt-2 but not alsgt-1 in strain mh0186 resulted in a decrease in the total SG and an almost complete loss of GL-B, indicating that AlSGT-2 is responsible for the synthesis of ß-SGs in A. limacinum mh0186, especially GL-B, which possesses a unique sterol structure.


Subject(s)
Glucosyltransferases/metabolism , Glycolipids/metabolism , Microalgae/enzymology , Glucosyltransferases/genetics , Glycolipids/chemistry , Molecular Conformation
2.
Mar Biotechnol (NY) ; 15(4): 476-86, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23547001

ABSTRACT

Thraustochytrids, unicellular eukaryotic marine protists, accumulate polyunsaturated fatty acids. Here, we report the molecular cloning and functional characterization of two fatty acid elongase genes (designated tselo1 and tselo2), which could be involved in the desaturase/elongase (standard) pathway in Thraustochytrium sp. ATCC 26185. TsELO1, the product of tselo1 and classified into a Δ6 elongase group by phylogenetic analysis, showed strong C18-Δ6 elongase activity and relatively weak C18-Δ9 and C20-Δ5 activities when expressed in the budding yeast Saccharomyces cerevisiae. TsELO2, classified into a Δ9 elongase subgroup, showed only C16-Δ9 activity. When expressed in Aurantiochytrium limacinum mh0186 using a thraustochytrid-derived promoter and a terminator, TsELO1 exhibited almost the same specificity as expressed in the yeast but TsELO2 showed weak C18-Δ9 activity, in addition to its main C16-Δ9 activity. These results suggest that TsELO1 functions not only as a C18-Δ6 and a C20-Δ5 elongase in the main route but also as a C18-Δ9 elongase in the alternative route of standard pathway, while TsELO2 functions mainly as a C16-Δ9 elongase generating vaccenic acid (C18:1n-7) in thraustochytrids. This is the first report describing a fatty acid elongase harboring C16-Δ9 activity in thraustochytrids.


Subject(s)
Acetyltransferases/genetics , Acetyltransferases/metabolism , Phylogeny , Stramenopiles/enzymology , Acetyltransferases/classification , Amino Acid Sequence , Chromatography, Gas , Cloning, Molecular , Cluster Analysis , DNA Primers/genetics , Fatty Acid Elongases , Fatty Acids/analysis , Molecular Sequence Data , Saccharomyces cerevisiae , Sequence Alignment
3.
Appl Environ Microbiol ; 78(9): 3193-202, 2012 May.
Article in English | MEDLINE | ID: mdl-22344656

ABSTRACT

A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neo(r)), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neo(r) marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neo(r) mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C(20:3n-6)) and eicosatetraenoic acid (C(20:4n-3)), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C(20:4n-6)) and eicosapentaenoic acid (C(20:5n-3)), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids.


Subject(s)
Gene Targeting/methods , Gene Transfer Techniques , Genetics, Microbial/methods , Stramenopiles/genetics , Anti-Infective Agents/pharmacology , Fatty Acid Desaturases/genetics , Gene Deletion , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , RNA, Ribosomal, 18S/genetics , Recombination, Genetic , Selection, Genetic , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL