Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Pollut ; 357: 124407, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908679

ABSTRACT

Polychlorinated naphthalenes (PCNs) were included in the banned list of the Stockholm Convention due to their potential to provoke a wide range of adverse effects on living organisms and the environment. Many reviews have been written to clarify the state of knowledge and identify the research needs of this pollutant class. However, studies have yet to analyse the scientometric complexities of PCN literature. In this study, we used bibliometric R and vosviewer programs as a scientometric tool to fill this gap by focusing on articles indexed on Web of Science and Scopus databases and those published between 1973 and 2022. A total of 707 articles were published within this period with a publication/author, author/publication, and co-authors/publication ratios of 0.45, 2.19, and 4.86, respectively. Developed countries dominated most scientometric indices (number of publications, citations, and collaboration networks) in the survey period. Lotka's inverse square rule of author productivity showed that Lotka's laws do not fit PCN literature. An annual percentage growth rate of 7.46% and a Kolmogorov-Smirnoff goodness-of-fit of 0.88 suggests that more output on PCNs is likely in years to come. More research is needed from scholars from developing countries to measure the supremacy of the developed nations and to effectively comply with the Stockholm Convention agreement.

2.
Chemosphere ; 352: 141322, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296212

ABSTRACT

Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.


Subject(s)
Chlorella , Uranium , Water Purification , Filtration , Ultrafiltration/methods , Water Pollution , Adsorption , Water Purification/methods
3.
J Hazard Mater ; 466: 133543, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38262318

ABSTRACT

The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Halogenated Diphenyl Ethers/toxicity , Halogenated Diphenyl Ethers/analysis , Environmental Monitoring , Organophosphates/analysis , Water/analysis , Flame Retardants/toxicity , Flame Retardants/analysis , Octanols , Esters/toxicity
4.
Environ Res ; 243: 117870, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38072111

ABSTRACT

The class of insecticides known as neonicotinoid insecticides has gained extensive application worldwide. Two characteristics of neonicotinoid pesticides are excellent insecticidal activity and a wide insecticidal spectrum for problematic insects. Neonicotinoid pesticides can also successfully manage pest insects that have developed resistance to other insecticide classes. Due to its powerful insecticidal properties and rapid plant absorption and translocation, dinotefuran, the most recent generation of neonicotinoid insecticides, has been widely used against biting and sucking insects. Dinotefuran has a wide range of potential applications and is often used globally. However, there is growing evidence that they negatively impact the biodiversity of organisms in agricultural settings as well as non-target organisms. The objective of this review is to present an updated summary of current understanding regarding the non-target effects of dinotefuran; we also enumerated nano- and bio-based mitigation and management strategies to reduce the impact of dinotefuran on non-target organisms and to pinpoint knowledge gaps. Finally, future study directions are suggested based on the limitations of the existing studies, with the goal of providing a scientific basis for risk assessment and the prudent use of these insecticides.


Subject(s)
Guanidines , Insecticides , Animals , Insecticides/toxicity , Ecosystem , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Insecta
SELECTION OF CITATIONS
SEARCH DETAIL
...