Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Nat Commun ; 15(1): 3340, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649703

During organ regeneration, after the initial responses to injury, gene expression patterns similar to those in normal development are reestablished during subsequent morphogenesis phases. This supports the idea that regeneration recapitulates development and predicts the existence of genes that reboot the developmental program after the initial responses. However, such rebooting mechanisms are largely unknown. Here, we explore core rebooting factors that operate during Xenopus limb regeneration. Transcriptomic analysis of larval limb blastema reveals that hoxc12/c13 show the highest regeneration specificity in expression. Knocking out each of them through genome editing inhibits cell proliferation and expression of a group of genes that are essential for development, resulting in autopod regeneration failure, while limb development and initial blastema formation are not affected. Furthermore, the induction of hoxc12/c13 expression partially restores froglet regenerative capacity which is normally very limited compared to larval regeneration. Thus, we demonstrate the existence of genes that have a profound impact alone on rebooting of the developmental program in a regeneration-specific manner.


Extremities , Gene Expression Regulation, Developmental , Homeodomain Proteins , Regeneration , Xenopus Proteins , Xenopus laevis , Animals , Cell Proliferation/genetics , Extremities/physiology , Gene Editing , Gene Expression Profiling , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Larva/growth & development , Larva/genetics , Regeneration/genetics , Regeneration/physiology , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Male , Female
2.
Sci Adv ; 8(28): eabn2330, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35857502

The physical causes of organ malformation remain largely unclear in most cases due to a lack of information on tissue/cell dynamics. Here, we address this issue by considering onset of cyclopia in sonic hedgehog (SHH)-inhibited chick embryos. We show that ventral forebrain-specific self-organization ability driven by SHH-dependent polarized patterns in cell shape, phosphorylated myosin localization, and collective cell motion promotes optic vesicle elongation during normal development. Stress loading tests revealed that these polarized dynamics result from mechanical responses. In particular, stress and active tissue deformation satisfy orthogonality, defining an SHH-regulated morphogenetic law. Without SHH signaling, cells cannot detect the direction of stress and move randomly, leading to insufficient optic vesicle elongation and consequently a cyclopia phenotype. Since polarized tissue/cell dynamics are common in organogenesis, cell disorientation caused by loss of mechanosensation could be a pathogenic mechanism for other malformations.

3.
Biochem Biophys Res Commun ; 554: 131-137, 2021 05 21.
Article En | MEDLINE | ID: mdl-33784508

The chemotaxis of Dictysotelium discoideum cells in response to a chemical gradient of cyclic adenosine 3',5'-monophosphate (cAMP) was studied using a newly designed microfluidic device. The device consists of 800 cell-sized channels in parallel, each 4 µm wide, 5 µm high, and 100 µm long, allowing us to prepare the same chemical gradient in all channels and observe the motility of 500-1000 individual cells simultaneously. The percentage of cells that exhibited directed migration was determined for various cAMP concentrations ranging from 0.1 pM to 10 µM. The results show that chemotaxis was highest at 100 nM cAMP, consistent with previous observations. At concentrations as low as 10 pM, about 16% of cells still exhibited chemotaxis, suggesting that the receptor occupancy of only 6 cAMP molecules/cell can induce chemotaxis in very sensitive cells. At 100 pM cAMP, chemotaxis was suppressed due to the self-production and secretion of intracellular cAMP induced by extracellular cAMP. Overall, systematic observations of a large number of individual cells under the same chemical gradients revealed the heterogeneity of chemotaxis responses in a genetically homogeneous cell population, especially the existence of a sub-population with extremely high sensitivity for chemotaxis.


Cell Movement/drug effects , Chemotaxis/drug effects , Cyclic AMP/pharmacology , Dictyostelium/physiology , Dictyostelium/drug effects , Microfluidics/methods , Single-Cell Analysis/methods
4.
Dev Growth Differ ; 63(3): 189-198, 2021 Apr.
Article En | MEDLINE | ID: mdl-33733477

The ability to manipulate gene expression at a specific region in a tissue or cell culture system is critical for analysis of target gene function. For chick embryos/cells, several gene introduction/induction methods have been established such as those involving retrovirus, electroporation, sonoporation, and lipofection. However, these methods have limitations in the accurate induction of localized gene expression. Here we demonstrate the effective application of a recently developed light-dependent gene expression induction system (LightOn system) using the Neurospora crassa photoreceptor Vivid fused with a Gal4 DNA binding domain and p65 activation domain (GAVPO) that alters its activity in response to light stimulus in a primary chicken cell culture system. We show that the gene expression level and induction specificity in this system are strongly dependent on the light irradiation conditions. Especially, the irradiation interval is an important parameter for modulating gene expression; for shorter time intervals, higher induction specificity can be achieved. Further, by adjusting light irradiation conditions, the expression level in primary chicken cells can be regulated in a multiple step manner, in contrast to the binary expression seen for gene disruption or introduction (i.e., null or overexpression). This result indicates that the light-dependent expression control method can be a useful technique in chick models to examine how gene function is affected by gradual changes in gene expression levels. We applied this light induction system to regulate Sox9 expression in cultures of chick limb mesenchyme cells and showed that induced SOX9 protein could modulate expression of downstream genes.


Cell Culture Techniques , Light , SOX9 Transcription Factor/genetics , Animals , Cells, Cultured , Chick Embryo , Chickens , Gene Expression Regulation, Developmental/genetics
5.
Cell Rep ; 30(11): 3889-3903.e5, 2020 03 17.
Article En | MEDLINE | ID: mdl-32187557

Despite extensive study, the morphogenetic mechanisms of heart looping remain controversial because of a lack of information concerning precise tissue-level deformation and the quantitative relationship between tissue and cellular dynamics; this lack of information causes difficulties in evaluating previously proposed models. To overcome these limitations, we perform four-dimensional (4D) high-resolution imaging to reconstruct a tissue deformation map, which reveals that, at the tissue scale, initial heart looping is achieved by left-right (LR) asymmetry in the direction of deformation within the myocardial tube. We further identify F-actin-dependent directional cell rearrangement in the right myocardium as a major contributor to LR asymmetric tissue deformation. Our findings demonstrate that heart looping involves dynamic and intrinsic cellular behaviors within the tubular tissue and provide a significantly different viewpoint from current models that are based on LR asymmetry of growth and/or stress at the tube boundaries. Finally, we propose a minimally sufficient model for initial heart looping that is also supported by mechanical simulations.


Heart/anatomy & histology , Imaging, Three-Dimensional , Stress, Mechanical , Actins/metabolism , Anatomic Landmarks , Animals , Anisotropy , Body Patterning , Cell Division , Cell Shape , Cell Size , Chickens , Computer Simulation , Models, Anatomic , Myocardium/cytology , Polymerization , Time-Lapse Imaging
6.
J Theor Biol ; 440: 80-87, 2018 03 07.
Article En | MEDLINE | ID: mdl-29277600

An objective, continuous, and robust method for staging developing embryos or organs is essential for providing a common measure of time when studying quantitative/systems developmental biology. However, classical methods based on factors such as somite number or qualitative visual attributes are discrete and/or ambiguous due to observers' subjectivity. Thus, an alternative staging method based on an explicit and continuous description of developmental states over time, such as anatomy/morphology, is needed. Here, we briefly propose a novel staging method as a natural extension of classical staging based on cross sectional images of organs, which are more accessible than full 3D structures. The contours are represented as 2D closed curves and quantified using elliptic Fourier descriptors. Treating the ambiguity in classical staging as a statistical model, the relationship between the novel morphometric staging and classical staging can be determined. This method was validated by applying it to two different sets of data: chick forebrain and Xenopus hindlimb development. Using this method, it is also possible to reconstruct the time evolution of the average morphology, which would be useful for quantitatively comparing morphologies between embryos or between normal and abnormal conditions.


Developmental Biology/methods , Image Processing, Computer-Assisted/methods , Morphogenesis , Animals , Chick Embryo , Embryonic Development , Fourier Analysis , Hindlimb/embryology , Hindlimb/growth & development , Prosencephalon/embryology , Xenopus/embryology
7.
Nat Commun ; 8(1): 15, 2017 05 02.
Article En | MEDLINE | ID: mdl-28465614

Quantifying global tissue deformation patterns is essential for understanding how organ-specific morphology is generated during development and regeneration. However, due to imaging difficulties and complex morphology, little is known about deformation dynamics for most vertebrate organs such as the brain and heart. To better understand these dynamics, we propose a method to precisely reconstruct global deformation patterns for three-dimensional morphogenesis of curved epithelial sheets using positional data from labeled cells representing only 1-10% of the entire tissue with limited resolution. By combining differential-geometrical and Bayesian frameworks, the method is applicable to any morphology described with arbitrary coordinates, and ensures the feasibility of analyzing many vertebrate organs. Application to data from chick forebrain morphogenesis demonstrates that our method provides not only a quantitative description of tissue deformation dynamics but also predictions of the mechanisms that determine organ-specific morphology, which could form the basis for the multi-scale understanding of organ morphogenesis.Quantifying deformation patterns of curved epithelial sheets is challenging owing to imaging difficulties. Here the authors develop a method to obtain a quantitative description of 3D tissue deformation dynamics from a small set of cell positional data and applied it to chick forebrain morphogenesis.


Brain/anatomy & histology , Epithelium/ultrastructure , Models, Anatomic , Organogenesis/genetics , Staining and Labeling/methods , Animals , Anisotropy , Brain/cytology , Brain/growth & development , Brain/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Chick Embryo , Computer Simulation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelium/growth & development , Epithelium/metabolism , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Image Processing, Computer-Assisted/methods , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
8.
Arch Virol ; 155(4): 577-81, 2010 Apr.
Article En | MEDLINE | ID: mdl-20186445

The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is used as a safer viral vector in mammalian cells with potential applications in gene therapy. However, the mechanism for the insusceptibility of mammalian cells to proliferative infection by entomopathogenic viruses is not well understood. Here, we studied the significance of epigenetic modifications such as histone acetylation, histone methylation and HP1 accumulation for AcMNPV gene expression in mammalian BHK cells. Real-time PCR and chromatin immunoprecipitation with sodium butyrate revealed an important relationship between viral gene expression and histone acetylation, with implications for a mechanism of suppression of AcMNPV gene expression in BHK cells.


Gene Expression Regulation, Viral , Histone Deacetylase Inhibitors/metabolism , Host-Pathogen Interactions , Nucleopolyhedroviruses/physiology , Animals , Cell Line , Cricetinae , Immunoprecipitation , Mesocricetus , Polymerase Chain Reaction
...