Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Biol Med ; 181: 109034, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217966

ABSTRACT

We propose a biodynamic model for managing waterborne diseases over an Internet of Things (IoT) network, leveraging the scalability of LoRa IoT technology to accommodate a growing human population. The model, based on fractional order derivatives (FOD), enables smart prediction and control of pathogens that cause waterborne diseases using IoT infrastructure. The human-pathogen-based biodynamic FOD model utilises epidemic parameters (SVIRT: susceptibility, vaccination, infection, recovery, and treatment) transmitted over the IoT network to predict pathogenic contamination in water reservoirs and dumpsites in Iji-Nike, Enugu, the study community in Nigeria. These pathogens contribute to person-to-person, water-to-person, and dumpsite-to-person transmission of disease vectors. Five control measures are proposed: potable water supply, treatment, vaccination, adequate sanitation, and health education campaigns. A stable disease-free equilibrium point is found when the effective reproduction number of the pathogens, R0eff<1 and unstable if R0eff>1. While other studies showed a 98.2% reduction in infections when using IoT alone, this paper demonstrates that combining the SVIRT epidemic control parameters (such as potable water supply and health education campaign) with IoT achieves a 99.89% reduction in infected human populations and a 99.56% reduction in pathogen populations in water reservoirs. Furthermore, integrating treatment with sanitation results in a 99.97% reduction in infected populations. Finally, combining these five control strategies nearly eliminates infection and pathogen populations, demonstrating the effectiveness of multifaceted approaches in public health and environmental management. This study provides a blueprint for governments to plan sustainable smart cities for a growing population, ensuring potable water free from pathogenic contamination,in line with the United Nations Sustainable Development Goals #6 (Clean Water and Sanitation) and #11 (Sustainable Cities and Communities).

2.
Heliyon ; 8(6): e09634, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35706943

ABSTRACT

Intelligent service care robots have increasingly been developed in mission-critical sectors such as healthcare systems, transportation, manufacturing, and environmental applications. The major drawbacks include the open-source Internet of Things (IoT) platform vulnerabilities, node failures, computational latency, and small memory capacity in IoT sensing nodes. This article provides reliable predictive analytics with the optimisation of data transmission characteristics in StreamRobot. Software-defined reliable optimisation design is applied in the system architecture. For the IoT implementation, the edge system model formulation is presented with a focus on edge cluster log-normality distribution, reliability, and equilibrium stability considerations. A real-world scenario for accurate data streams generation from in-built TelosB sensing nodes is converged at a sink-analytic dashboard. Two-phase configurations, namely off-taker and on-demand, link-state protocols are mapped for deterministic data stream offloading. An orphan reconnection trigger mechanism is used for reliable node-to-sink resilient data transmissions. Data collection is achieved, using component-based programming in the experimental testbed. Measurement parameters are derived with TelosB IoT nodes. Reliability validations on remote monitoring and prediction processes are studied considering neural constrained software-defined networking (SDN) intelligence. An OpenFlow-SDN construct is deployed to offload traffic from the edge to the fog layer. At the core, fog detection-to-cloud predictive machine learning (FD-CPML) is used to predict real-time data streams. Prediction accuracy is validated with decision tree, logistic regression, and the proposed FD-CPML. The data streams latency gave 40.00%, 33.33%, and 26.67%, respectively. Similarly, linear predictive scalability behaviour on the network plane gave 30.12%, 33.73%, and 36.15% respectively. The results show satisfactory responses in terms of reliable communication and intelligent monitoring of node failures.

SELECTION OF CITATIONS
SEARCH DETAIL