Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chemistry ; 26(9): 2025-2033, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-31769085

ABSTRACT

A novel series of C12-keto-type saxitoxin (STX) derivatives bearing an unusual nonhydrated form of the ketone at C12 has been synthesized, and their NaV -inhibitory activity has been evaluated in a cell-based assay as well as whole-cell patch-clamp recording. Among these compounds, 11-benzylidene STX (3 a) showed potent inhibitory activity against neuroblastoma Neuro 2A in both cell-based and electrophysiological analyses, with EC50 and IC50 values of 8.5 and 30.7 nm, respectively. Interestingly, the compound showed potent inhibitory activity against tetrodotoxin-resistant subtype of NaV 1.5, with an IC50 value of 94.1 nm. Derivatives 3 a-d and 3 f showed low recovery rates from NaV 1.2 subtype (ca 45-79 %) compared to natural dcSTX (2), strongly suggesting an irreversible mode of interaction. We propose an interaction model for the C12-keto derivatives with NaV in which the enone moiety in the STX derivatives 3 works as Michael acceptor for the carboxylate of Asp1717 .


Subject(s)
Saxitoxin/chemistry , Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channels/metabolism , Action Potentials/drug effects , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Patch-Clamp Techniques , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Quantum Theory , Saxitoxin/metabolism , Saxitoxin/pharmacology , Sodium Channel Blockers/metabolism , Sodium Channel Blockers/pharmacology , Tetrodotoxin/chemistry , Tetrodotoxin/metabolism , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/genetics
2.
Angew Chem Int Ed Engl ; 55(38): 11600-3, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27512941

ABSTRACT

11-Saxitoxinethanoic acid (SEA) is a member of the saxitoxin (STX) family of paralytic shellfish poisons, and contains an unusual C-C bond at the C11 position. Reported herein is a total synthesis of SEA. The key to our synthesis lies in a Mukaiyama aldol condensation reaction of silyl enol ether with glyoxylate in the presence of an anhydrous fluoride reagent, [Bu4 N][Ph3 SnF2 ], which directly constructs the crucial C-C bond at the C11 position in SEA. The NaV Ch-inhibitory activities of SEA and its derivatives were evaluated by means of cell-based assay. SEA showed an IC50 value of (47±12) nm, which is approximately twice as potent as decarbamoyl-STX (dcSTX).

SELECTION OF CITATIONS
SEARCH DETAIL