Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2402226121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621137

ABSTRACT

Since its discovery over three decades ago, signal transducer and activator of transcription 1 (STAT1) has been extensively studied as a central mediator for interferons (IFNs) signaling and antiviral defense. Here, using genetic and biochemical assays, we unveil Thr748 as a conserved IFN-independent phosphorylation switch in Stat1, which restricts IFN signaling and promotes innate inflammatory responses following the recognition of the bacterial-derived toxin lipopolysaccharide (LPS). Genetically engineered mice expressing phospho-deficient threonine748-to-alanine (T748A) mutant Stat1 are resistant to LPS-induced lethality. Of note, T748A mice exhibited undisturbed IFN signaling, as well as total expression of Stat1. Further, the T748A point mutation of Stat1 recapitulates the safeguard effect of the genetic ablation of Stat1 following LPS-induced lethality, indicating that the Thr748 phosphorylation contributes inflammatory functionalities of Stat1. Mechanistically, LPS-induced Toll-like receptor 4 endocytosis activates a cell-intrinsic IκB kinase-mediated Thr748 phosphorylation of Stat1, which promotes macrophage inflammatory response while restricting the IFN and anti-inflammatory responses. Depletion of macrophages restores the sensitivity of the T748A mice to LPS-induced lethality. Together, our study indicates a phosphorylation-dependent modular functionality of Stat1 in innate immune responses: IFN phospho-tyrosine dependent and inflammatory phospho-threonine dependent. Better understanding of the Thr748 phosphorylation of Stat1 may uncover advanced pharmacologically targetable molecules and offer better treatment modalities for sepsis, a disease that claims millions of lives annually.


Subject(s)
Lipopolysaccharides , Signal Transduction , Animals , Mice , Phosphorylation , Lipopolysaccharides/pharmacology , Interferons/metabolism , Inflammation/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
2.
Front Immunol ; 15: 1363704, 2024.
Article in English | MEDLINE | ID: mdl-38495886

ABSTRACT

BCL11B is a transcription factor with six C2H2-type zinc-finger domains. Studies in mice have shown that Bcl11b plays essential roles in T cell development. Several germline heterozygous BCL11B variants have been identified in human patients with inborn errors of immunity (IEI) patients. Among these, two de novo mis-sense variants cause asparagine (N) to lysine (K) replacement in distinct zinc-finger domains, BCL11BN441K and BCL11BN807K. To elucidate the pathogenesis of the BCL11BN807K variant, we generated a mouse model of BCL11BN807K by inserting the corresponding mutation, Bcl11bN797K, into the mouse genome. In Bcl11b+/N797K mice, the proportion of immature CD4-CD8+ single-positive thymocytes was increased, and the development of invariant natural killer cells was severely inhibited in a T-cell-intrinsic manner. Under competitive conditions, γδT cell development was outcompeted by control cells. Bcl11bN797K/N797K mice died within one day of birth. Recipient mice reconstituted with Bcl11bN797K/N797K fetal liver cells nearly lacked CD4+CD8+ double-positive thymocytes, which was consistent with the lack of their emergence in culture from Bcl11bN797K/N797K fetal liver progenitors. Interestingly, Bcl11bN797K/N797K progenitors gave rise to aberrant c-Kit+ and CD44+ cells both in vivo and in vitro. The increase in the proportion of immature CD8 single-positive thymocytes in the Bcl11bN797K mutants is caused, in part, by the inefficient activation of the Cd4 gene due to the attenuated function of the two Cd4 enhancers via distinct mechanisms. Therefore, we conclude that immunodeficient patient-derived Bcl11bN797K mutant mice elucidated a novel role for Bcl11b in driving the appropriate transition of CD4-CD8- into CD4+CD8+ thymocytes.


Subject(s)
Repressor Proteins , Thymocytes , Animals , Humans , Mice , Repressor Proteins/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Zinc
3.
J Immunol ; 210(11): 1728-1739, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37074186

ABSTRACT

Posttranslational modification, such as phosphorylation, is an important biological event that modulates and diversifies protein function. Bcl11b protein is a zinc-finger transcription factor that plays a crucial role in early T cell development and the segregation of T cell subsets. Bcl11b possesses at least 25 serine/threonine (S/T) residues that can be phosphorylated upon TCR stimulation. To understand the physiological relevance of the phosphorylation on Bcl11b protein, we replaced S/T residues with alanine (A) by targeting murine Bcl11b gene in embryonic stem cells. By combinational targeting of exons 2 and 4 in the Bcl11b gene, we generated a mouse strain, Bcl11b-phosphorylation site mutation mice, in which 23 S/T residues were replaced with A residues. Such extensive manipulation left only five putative phosphorylated residues, two of which were specific for mutant protein, and resulted in reduced amounts of Bcl11b protein. However, primary T cell development in the thymus, as well as the maintenance of peripheral T cells, remained intact even after loss of major physiological phosphorylation. In addition, in vitro differentiation of CD4+ naive T cells into effector Th cell subsets-Th1, Th2, Th17, and regulatory T-was comparable between wild-type and Bcl11b-phosphorylation site mutation mice. These findings indicate that the physiological phosphorylation on major 23 S/T residues in Bcl11b is dispensable for Bcl11b functions in early T cell development and effector Th cell differentiation.


Subject(s)
Repressor Proteins , Tumor Suppressor Proteins , Animals , Mice , Phosphorylation , Repressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation , Protein Processing, Post-Translational , Serine/genetics , Serine/metabolism , Threonine/genetics , Threonine/metabolism
4.
Sci Immunol ; 7(72): eabq1408, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35687694

ABSTRACT

Among the BTB-ZF transcription factor family, three amino acids in the BTB domain make Thpok unique in repressing cytotoxic lineage-related genes via recruitment of the NuRD chormatin-remodeling complex (see the related Research Article by Gao et al.).


Subject(s)
BTB-POZ Domain , Gene Expression Regulation , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism
5.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34694366

ABSTRACT

AIOLOS/IKZF3 is a member of the IKAROS family of transcription factors. IKAROS/IKZF1 mutations have been previously associated with different forms of primary immunodeficiency. Here we describe a novel combined immunodeficiency due to an IKZF3 mutation in a family presenting with T and B cell involvement, Pneumocystis jirovecii pneumonia, and/or chronic lymphocytic leukemia. Patients carrying the AIOLOS p.N160S heterozygous variant displayed impaired humoral responses, abnormal B cell development (high percentage of CD21low B cells and negative CD23 expression), and abrogated CD40 responses. Naive T cells were increased, T cell differentiation was abnormal, and CD40L expression was dysregulated. In vitro studies demonstrated that the mutant protein failed DNA binding and pericentromeric targeting. The mutant was fully penetrant and had a dominant-negative effect over WT AIOLOS but not WT IKAROS. The human immunophenotype was recapitulated in a murine model carrying the corresponding human mutation. As demonstrated here, AIOLOS plays a key role in T and B cell development in humans, and the particular gene variant described is strongly associated with immunodeficiency and likely malignancy.


Subject(s)
B-Lymphocytes/pathology , Ikaros Transcription Factor/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Pneumonia, Pneumocystis/genetics , T-Lymphocytes/pathology , Adult , Animals , Child , Female , Humans , Ikaros Transcription Factor/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Middle Aged , Mutation , Pneumonia, Pneumocystis/blood , Exome Sequencing
6.
Nat Immunol ; 22(7): 893-903, 2021 07.
Article in English | MEDLINE | ID: mdl-34155405

ABSTRACT

In the present study, we report a human-inherited, impaired, adaptive immunity disorder, which predominantly manifested as a B cell differentiation defect, caused by a heterozygous IKZF3 missense variant, resulting in a glycine-to-arginine replacement within the DNA-binding domain of the encoded AIOLOS protein. Using mice that bear the corresponding variant and recapitulate the B and T cell phenotypes, we show that the mutant AIOLOS homodimers and AIOLOS-IKAROS heterodimers did not bind the canonical AIOLOS-IKAROS DNA sequence. In addition, homodimers and heterodimers containing one mutant AIOLOS bound to genomic regions lacking both canonical motifs. However, the removal of the dimerization capacity from mutant AIOLOS restored B cell development. Hence, the adaptive immunity defect is caused by the AIOLOS variant hijacking IKAROS function. Heterodimeric interference is a new mechanism of autosomal dominance that causes inborn errors of immunity by impairing protein function via the mutation of its heterodimeric partner.


Subject(s)
Adaptive Immunity , B-Lymphocytes/metabolism , Cell Differentiation , Ikaros Transcription Factor/metabolism , Primary Immunodeficiency Diseases/metabolism , T-Lymphocytes/metabolism , Animals , B-Lymphocytes/immunology , COS Cells , Chlorocebus aethiops , Disease Models, Animal , Female , HEK293 Cells , Humans , Ikaros Transcription Factor/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation, Missense , NIH 3T3 Cells , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Signal Transduction , T-Lymphocytes/immunology
7.
J Immunol ; 206(11): 2700-2713, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34021049

ABSTRACT

B lymphocyte development is dependent on the interplay between the chromatin landscape and lineage-specific transcription factors. It has been suggested that B lineage commitment is associated with major changes in the nuclear chromatin environment, proposing a critical role for lineage-specific transcription factors in the formation of the epigenetic landscape. In this report, we have used chromosome conformation capture in combination with assay for transposase-accessible chromatin sequencing analysis to enable highly efficient annotation of both proximal and distal transcriptional control elements to genes activated in B lineage specification in mice. A large majority of these genes were annotated to at least one regulatory element with an accessible chromatin configuration in multipotent progenitors. Furthermore, the majority of binding sites for the key regulators of B lineage specification, EBF1 and PAX5, occurred in already accessible regions. EBF1 did, however, cause a dynamic change in assay for transposase-accessible chromatin accessibility and was critical for an increase in distal promoter-enhancer interactions. Our data unravel an extensive epigenetic priming at regulatory elements annotated to lineage-restricted genes and provide insight into the interplay between the epigenetic landscape and transcription factors in cell specification.


Subject(s)
B-Lymphocytes/immunology , Epigenesis, Genetic/immunology , PAX5 Transcription Factor/immunology , Trans-Activators/immunology , Animals , Epigenesis, Genetic/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , PAX5 Transcription Factor/deficiency , PAX5 Transcription Factor/genetics , Trans-Activators/deficiency , Trans-Activators/genetics
8.
Blood ; 137(22): 3037-3049, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33619557

ABSTRACT

Genes encoding B lineage-restricted transcription factors are frequently mutated in B-lymphoid leukemias, suggesting a close link between normal and malignant B-cell development. One of these transcription factors is early B-cell factor 1 (EBF1), a protein of critical importance for lineage specification and survival of B-lymphoid progenitors. Here, we report that impaired EBF1 function in mouse B-cell progenitors results in reduced expression of Myc. Ectopic expression of MYC partially rescued B-cell expansion in the absence of EBF1 both in vivo and in vitro. Using chromosome conformation analysis in combination with ATAC-sequencing, chromatin immunoprecipitation-sequencing, and reporter gene assays, six EBF1-responsive enhancer elements were identified within the Myc locus. CRISPR-Cas9-mediated targeting of EBF1-binding sites identified one element of key importance for Myc expression and pro-B cell expansion. These data provide evidence that Myc is a direct target of EBF1. Furthermore, chromatin immunoprecipitation-sequencing analysis revealed that several regulatory elements in the Myc locus are targets of PAX5. However, ectopic expression of PAX5 in EBF1-deficient cells inhibits the cell cycle and reduces Myc expression, suggesting that EBF1 and PAX5 act in an opposing manner to regulate Myc levels. This hypothesis is further substantiated by the finding that Pax5 inactivation reduces requirements for EBF1 in pro-B-cell expansion. The binding of EBF1 and PAX5 to regulatory elements in the human MYC gene in a B-cell acute lymphoblastic leukemia cell line indicates that the EBF1:PAX5:MYC regulatory loop is conserved and may control both normal and malignant B-cell development.


Subject(s)
Gene Expression Regulation, Leukemic , PAX5 Transcription Factor/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cells, B-Lymphoid/metabolism , Proto-Oncogene Proteins c-myc/biosynthesis , Trans-Activators/metabolism , Animals , Cell Proliferation , Mice , Mice, Knockout , PAX5 Transcription Factor/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/pathology , Proto-Oncogene Proteins c-myc/genetics , Response Elements , Trans-Activators/genetics
9.
Sci Rep ; 10(1): 13554, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32782283

ABSTRACT

MicroRNAs (miRNAs), one of small non-coding RNAs, regulate many cell functions through their post-transcriptionally downregulation of target genes. Accumulated studies have revealed that miRNAs are involved in hematopoiesis. In the present study, we investigated effects of miR-669m overexpression on hematopoiesis in mouse in vivo, and found that erythroid differentiation was inhibited by the overexpression. Our bioinformatic analyses showed that candidate targets of miR-669m which are involved in the erythropoiesis inhibition are A-kinase anchoring protein 7 (Akap7) and X-linked Kx blood group (Xk) genes. These two genes were predicted as targets of miR-669m by two different in silico methods and were upregulated in late erythroblasts in a public RNA-seq data, which was confirmed with qPCR. Further, miR-669m suppressed luciferase reporters for 3' untranslated regions of Akap7 and Xk genes, which supports these genes are direct targets of miR-669m. Physiologically, miR-669m was not expressed in the erythroblast. In conclusion, using miR-669m, we found Akap7 and Xk, which may be involved in erythroid differentiation, implying that manipulating these genes could be a therapeutic way for diseases associated with erythropoiesis dysfunction.


Subject(s)
A Kinase Anchor Proteins/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Cell Differentiation , Erythroblasts/cytology , Erythropoiesis , MicroRNAs/genetics , A Kinase Anchor Proteins/genetics , Amino Acid Transport Systems, Neutral/genetics , Animals , Erythroblasts/metabolism , Female , Mice , Mice, Inbred C57BL
10.
Leukemia ; 34(9): 2405-2417, 2020 09.
Article in English | MEDLINE | ID: mdl-32089543

ABSTRACT

In classical Hodgkin lymphoma (cHL)-characterized by the presence of Hodgkin and Reed-Sternberg (HRS) cells-tumor-associated macrophages (TAMs) play a pivotal role in tumor formation. However, the significance of direct contact between HRS cells and TAMs has not been elucidated. HRS cells and TAMs are known to express PD-L1, which leads to PD-1+ CD4+ T cell exhaustion in cHL. Here, we found that PD-L1/L2 expression was elevated in monocytes co-cultured with HRS cells within 1 h, but not in monocytes cultured with supernatants of HRS cells. Immunofluorescence analysis of PD-L1/L2 revealed that their upregulation resulted in membrane transfer called "trogocytosis" from HRS cells to monocytes. PD-L1/L2 upregulation was not observed in monocytes co-cultured with PD-L1/L2-deficient HRS cells, validating the hypothesis that there is a direct transfer of PD-L1/L2 from HRS cells to monocytes. In the patients, both ligands (PD-L1/L2) were upregulated in TAMs in contact with HRS cells, but not in TAMs distant from HRS cells, suggesting that trogocytosis occurs in cHL patients. Taken together, trogocytosis may be one of the mechanisms that induces rapid upregulation of PD-L1/L2 in monocytes to evade antitumor immunity through the suppression of T cells as mediated by MHC antigen presentation.


Subject(s)
B7-H1 Antigen/metabolism , Hodgkin Disease/metabolism , Monocytes/metabolism , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Cell Line, Tumor , Cell Movement , Hodgkin Disease/immunology , Hodgkin Disease/pathology , Humans , Major Histocompatibility Complex/immunology , Tumor Microenvironment/immunology
12.
Front Immunol ; 10: 2889, 2019.
Article in English | MEDLINE | ID: mdl-31867020

ABSTRACT

Genital herpes is a common sexually transmitted infection caused by herpes simplex virus type 2 (HSV-2). Genital herpes significantly enhances the acquisition and transmission of HIV-1 by creating a microenvironment that supports HIV infection in the host. Dendritic cells (DCs) represent one of the first innate cell types that encounter HIV-1 and HSV-2 in the genital mucosa. HSV-2 infection has been shown to modulate DCs, rendering them more receptive to HIV infection. Here, we investigated the potential mechanisms underlying HSV-2-mediated augmentation of HIV-1 infection. We demonstrated that the presence of HSV-2 enhanced productive HIV-1 infection of DCs and boosted inflammatory and antiviral responses. The HSV-2 augmented HIV-1 infection required intact HSV-2 DNA, but not active HSV-2 DNA replication. Furthermore, the augmented HIV infection of DCs involved the cGAS-STING pathway. Interestingly, we could not see any involvement of TLR2 or TLR3 nor suppression of infection by IFN-ß production. The conditioning by HSV-2 in dual exposed DCs decreased protein expression of IFI16, cGAS, STING, and TBK1, which is associated with signaling through the STING pathway. Dual exposure to HSV-2 and HIV-1 gave decreased levels of several HIV-1 restriction factors, especially SAMHD1, TREX1, and APOBEC3G. Activation of the STING pathway in DCs by exposure to both HSV-2 and HIV-1 most likely led to the proteolytic degradation of the HIV-1 restriction factors SAMHD1, TREX1, and APOBEC3G, which should release their normal restriction of HIV infection in DCs. This released their normal restriction of HIV infection in DCs. We showed that HSV-2 reprogramming of cellular signaling pathways and protein expression levels in the DCs provided a setting where HIV-1 can establish a higher productive infection in the DCs. In conclusion, HSV-2 reprogramming opens up DCs for HIV-1 infection and creates a microenvironment favoring HIV-1 transmission.


Subject(s)
Coinfection , HIV Infections/immunology , HIV Infections/virology , HIV-1/physiology , Herpes Genitalis/immunology , Herpes Genitalis/virology , Herpesvirus 2, Human/physiology , Symbiosis , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Susceptibility , HIV Infections/metabolism , Herpes Genitalis/metabolism , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction
13.
PLoS Genet ; 15(8): e1008280, 2019 08.
Article in English | MEDLINE | ID: mdl-31381561

ABSTRACT

One of the most frequently mutated proteins in human B-lineage leukemia is the transcription factor PAX5. These mutations often result in partial rather than complete loss of function of the transcription factor. While the functional dose of PAX5 has a clear connection to human malignancy, there is limited evidence for that heterozygote loss of PAX5 have a dramatic effect on the development and function of B-cell progenitors. One possible explanation comes from the finding that PAX5 mutated B-ALL often display complex karyotypes and additional mutations. Thus, PAX5 might be one component of a larger transcription factor network targeted in B-ALL. To investigate the functional network associated with PAX5 we used BioID technology to isolate proteins associated with this transcription factor in the living cell. This identified 239 proteins out of which several could be found mutated in human B-ALL. Most prominently we identified the commonly mutated IKZF1 and RUNX1, involved in the formation of ETV6-AML1 fusion protein, among the interaction partners. ChIP- as well as PLAC-seq analysis supported the idea that these factors share a multitude of target genes in human B-ALL cells. Gene expression analysis of mouse models and primary human leukemia suggested that reduced function of PAX5 increased the ability of an oncogenic form of IKZF1 or ETV6-AML to modulate gene expression. Our data reveals that PAX5 belong to a regulatory network frequently targeted by multiple mutations in B-ALL shedding light on the molecular interplay in leukemia cells.


Subject(s)
Gene Expression Regulation, Leukemic , Gene Regulatory Networks/genetics , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Core Binding Factor Alpha 2 Subunit/genetics , Disease Models, Animal , Gene Expression Regulation , Humans , Ikaros Transcription Factor/genetics , Mice , Mice, Knockout , Mutation , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid , Primary Cell Culture , Tumor Cells, Cultured
14.
Mol Cell Biol ; 38(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29915154

ABSTRACT

Zinc finger protein 521 (ZFP521), a DNA-binding protein containing 30 Krüppel-like zinc fingers, has been implicated in the differentiation of multiple cell types, including hematopoietic stem and progenitor cells (HSPC) and B lymphocytes. Here, we report a novel role for ZFP521 in regulating the earliest stages of hematopoiesis and lymphoid cell development via a cell-extrinsic mechanism. Mice with inactivated Zfp521 genes (Zfp521-/-) possess reduced frequencies and numbers of hematopoietic stem and progenitor cells, common lymphoid progenitors, and B and T cell precursors. Notably, ZFP521 deficiency changes bone marrow microenvironment cytokine levels and gene expression within resident HSPC, consistent with a skewing of hematopoiesis away from lymphopoiesis. These results advance our understanding of ZFP521's role in normal hematopoiesis, justifying further research to assess its potential as a target for cancer therapies.


Subject(s)
Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Stem Cell Niche/physiology , Transcription Factors/metabolism , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cytokines/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Lymphopoiesis/genetics , Lymphopoiesis/physiology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myelopoiesis/genetics , Myelopoiesis/physiology , Protein Binding , Stem Cell Niche/genetics , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics
15.
J Exp Med ; 215(7): 1947-1963, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29899037

ABSTRACT

To understand the developmental trajectories in early lymphocyte differentiation, we identified differentially expressed surface markers on lineage-negative lymphoid progenitors (LPs). Single-cell polymerase chain reaction experiments allowed us to link surface marker expression to that of lineage-associated transcription factors (TFs) and identify GFRA2 and BST1 as markers of early B cells. Functional analyses in vitro and in vivo as well as single-cell gene expression analyses supported that surface expression of these proteins defined distinct subpopulations that include cells from both the classical common LPs (CLPs) and Fraction A compartments. The formation of the GFRA2-expressing stages of development depended on the TF EBF1, critical both for the activation of stage-specific target genes and modulation of the epigenetic landscape. Our data show that consecutive expression of Ly6D, GFRA2, and BST1 defines a developmental trajectory linking the CLP to the CD19+ progenitor compartment.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Compartmentation , Lymphopoiesis , Stem Cells/cytology , ADP-ribosyl Cyclase/metabolism , Animals , Antigens, CD/metabolism , Antigens, Ly/metabolism , Bone Marrow/metabolism , Cell Lineage , Cell Membrane/metabolism , GPI-Linked Proteins/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Mice , Models, Biological
16.
Cell ; 173(5): 1204-1216.e26, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29628141

ABSTRACT

Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.


Subject(s)
Intramolecular Transferases/metabolism , Protein Biosynthesis , Pseudouridine/metabolism , RNA, Transfer/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Differentiation , Eukaryotic Initiation Factors/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Intramolecular Transferases/antagonists & inhibitors , Intramolecular Transferases/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Myelodysplastic Syndromes/pathology , Nucleic Acid Conformation , Phosphoproteins/metabolism , Poly(A)-Binding Protein I/antagonists & inhibitors , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Stem Cell Niche
17.
Blood ; 131(23): 2552-2567, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29685921

ABSTRACT

Epstein-Barr virus (EBV) causes various diseases in the elderly, including B-cell lymphoma such as Hodgkin's lymphoma and diffuse large B-cell lymphoma. Here, we show that EBV acts in trans on noninfected macrophages in the tumor through exosome secretion and augments the development of lymphomas. In a humanized mouse model, the different formation of lymphoproliferative disease (LPD) between 2 EBV strains (Akata and B95-8) was evident. Furthermore, injection of Akata-derived exosomes affected LPD severity, possibly through the regulation of macrophage phenotype in vivo. Exosomes collected from Akata-lymphoblastoid cell lines reportedly contain EBV-derived noncoding RNAs such as BamHI fragment A rightward transcript (BART) micro-RNAs (miRNAs) and EBV-encoded RNA. We focused on the exosome-mediated delivery of BART miRNAs. In vitro, BART miRNAs could induce the immune regulatory phenotype in macrophages characterized by the gene expressions of interleukin 10, tumor necrosis factor-α, and arginase 1, suggesting the immune regulatory role of BART miRNAs. The expression level of an EBV-encoded miRNA was strongly linked to the clinical outcomes in elderly patients with diffuse large B-cell lymphoma. These results implicate BART miRNAs as 1 of the factors regulating the severity of lymphoproliferative disease and as a diagnostic marker for EBV+ B-cell lymphoma.


Subject(s)
Epstein-Barr Virus Infections/complications , Exosomes/virology , Herpesvirus 4, Human/genetics , Inflammation/virology , Lymphoma/virology , RNA, Viral/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/immunology , Cell Line, Tumor , Disease Models, Animal , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Exosomes/genetics , Exosomes/immunology , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/isolation & purification , Humans , Inflammation/etiology , Inflammation/genetics , Inflammation/immunology , Lymphoma/etiology , Lymphoma/genetics , Lymphoma/immunology , Mice , MicroRNAs/analysis , MicroRNAs/genetics , RNA, Viral/analysis , Sequence Analysis, RNA , Tumor Microenvironment
18.
Genes Dev ; 30(22): 2486-2499, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27913602

ABSTRACT

Even though leukemia is considered to be confined to one specific hematopoietic cell type, cases of acute leukemia of ambiguous lineage and patients relapsing in phenotypically altered disease suggest that a malignant state may be transferred between lineages. Because B-cell leukemia is associated with mutations in transcription factors of importance for stable preservation of lineage identity, we here investigated the potential lineage plasticity of leukemic cells. We report that primary pro-B leukemia cells from mice carrying heterozygous mutations in either or both the Pax5 and Ebf1 genes, commonly mutated in human leukemia, can be converted into T lineage leukemia cells. Even though the conversion process involved global changes in gene expression and lineage-restricted epigenetic reconfiguration, the malignant phenotype of the cells was preserved, enabling them to expand as T lineage leukemia cells in vivo. Furthermore, while the transformed pro-B cells displayed plasticity toward myeloid lineages, the converted cells failed to cause myeloid leukemia after transplantation. These data provide evidence that a malignant phenotype can be transferred between hematopoietic lineages. This has important implications for modern cancer medicine because lineage targeted treatment of leukemia patients can be predicted to provoke the emergence of phenotypically altered subclones, causing clinical relapse.


Subject(s)
B-Lymphocytes/pathology , Cell Transformation, Neoplastic/genetics , Leukemia, Lymphoid/physiopathology , Animals , Cell Line , Cell Line, Tumor , Cell Lineage , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Leukemia, T-Cell/physiopathology , Mice , Mice, Inbred C57BL , Mutation , Myeloid Cells/pathology , Precursor Cells, B-Lymphoid/metabolism , Protein Binding , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction
19.
PLoS One ; 9(9): e108535, 2014.
Article in English | MEDLINE | ID: mdl-25255288

ABSTRACT

Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion.


Subject(s)
Cell Adhesion Molecules/metabolism , Receptors, Notch/metabolism , Animals , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Line , Gene Expression , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Ligands , Mast Cells/metabolism , Mice , Protein Binding , Receptors, Notch/genetics , Signal Transduction , Stromal Cells/metabolism
20.
Int J Hematol ; 99(5): 553-60, 2014.
Article in English | MEDLINE | ID: mdl-24687917

ABSTRACT

Posttranscriptional gene regulation by small RNAs (15-40-nucleotide noncoding RNAs) is now established as an important branch of the gene regulatory system. It has recently been revealed that noncoding RNAs can be categorized into different types and that they work through novel mechanisms. In addition, it has been shown that noncoding RNAs mediate intercellular communication and, importantly, that cross talk between coding and noncoding RNAs occurs. In this review, we discuss the recent findings concerning small RNAs. It was originally proposed that microRNAs (miRNAs) work to "fine tune" the determination of cell fate. However, critical functions beyond fine tuning have been revealed. In addition to miRNAs, next-generation sequencing has revealed the existence of various species of non-canonical small RNAs: mirtrons, piRNAs, 21U-RNA, endo-siRNAs, snoRNAs, usRNAs, and Y-RNA-derived small RNAs. Some of these species are involved in response to viral infection. Finally, we highlight the intracellular functions of small RNAs, which involve the exosomes.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/immunology , Gene Expression Regulation , Hematopoiesis/genetics , Infections/genetics , Infections/immunology , RNA, Small Untranslated/genetics , Animals , Humans , Immunomodulation , Infections/metabolism , MicroRNAs/genetics , Signal Transduction , Virus Diseases/genetics , Virus Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...