Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
JCI Insight ; 8(22)2023 Nov 22.
Article En | MEDLINE | ID: mdl-37815863

Ventricular arrhythmias (VAs) in heart failure are enhanced by sympathoexcitation. However, radiotracer studies of catecholamine uptake in failing human hearts demonstrate a proclivity for VAs in patients with reduced cardiac sympathetic innervation. We hypothesized that this counterintuitive finding is explained by heterogeneous loss of sympathetic nerves in the failing heart. In a murine model of dilated cardiomyopathy (DCM), delayed PET imaging of sympathetic nerve density using the catecholamine analog [11C]meta-Hydroxyephedrine demonstrated global hypoinnervation in ventricular myocardium. Although reduced, sympathetic innervation in 2 distinct DCM models invariably exhibited transmural (epicardial to endocardial) gradients, with the endocardium being devoid of sympathetic nerve fibers versus controls. Further, the severity of transmural innervation gradients was correlated with VAs. Transmural innervation gradients were also identified in human left ventricular free wall samples from DCM versus controls. We investigated mechanisms underlying this relationship by in silico studies in 1D, 2D, and 3D models of failing and normal human hearts, finding that arrhythmogenesis increased as heterogeneity in sympathetic innervation worsened. Specifically, both DCM-induced myocyte electrical remodeling and spatially inhomogeneous innervation gradients synergistically worsened arrhythmogenesis. Thus, heterogeneous innervation gradients in DCM promoted arrhythmogenesis. Restoration of homogeneous sympathetic innervation in the failing heart may reduce VAs.


Cardiomyopathy, Dilated , Humans , Mice , Animals , Cardiomyopathy, Dilated/diagnostic imaging , Heart , Myocardium , Arrhythmias, Cardiac/diagnostic imaging , Catecholamines
2.
Physiol Rep ; 9(22): e15121, 2021 11.
Article En | MEDLINE | ID: mdl-34806324

Variants in the LMNA gene, which encodes for Lamin A/C, are associated with cardiac conduction disease (CCD). We previously reported that Lamin A/C variants p.R545H and p.A287Lfs*193, which were identified in CCD patients, decreased peak INa in HEK-293 cells expressing Nav 1.5. Decreased peak INa in the cardiac conduction system could account for patients' atrioventricular block. We found that serine 22 (Ser 22) phosphorylation of Lamin A/C was decreased in the p.R545H variant and hypothesized that lamin phosphorylation modulated Nav 1.5 activity. To test this hypothesis, we assessed Nav 1.5 function in HEK-293 cells co-transfected with LMNA variants or treated with the small molecule LBL1 (lamin-binding ligand 1). LBL1 decreased Ser 22 phosphorylation by 65% but did not affect Nav 1.5 function. To test the complete loss of phosphorylation, we generated a version of LMNA with serine 22 converted to alanine 22 (S22A-LMNA); and a version of mutant R545H-LMNA that mimics phosphorylation via serine 22 to aspartic acid 22 substitution (S22D-R545H-LMNA). We found that S22A-LMNA inhibited Lamin-mediated activation of peak INa by 63% and shifted voltage-dependency of steady-state inactivation of Nav 1.5. Conversely, S22D-R545H-LMNA abolished the effects of mutant R545H-LMNA on voltage-dependency but not peak INa . We conclude that Lamin A/C Ser 22 phosphorylation can modulate Nav 1.5 function and contributes to the mechanism by which R545H-LMNA alters Nav 1.5 function. The differential impact of complete versus partial loss of Ser 22 phosphorylation suggests a threshold of phosphorylation that is required for full Nav 1.5 modulation. This is the first study to link Lamin A/C phosphorylation to Nav 1.5 function.


Cardiac Conduction System Disease/genetics , Lamin Type A/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Cardiac Conduction System Disease/metabolism , HEK293 Cells , Humans , Lamin Type A/metabolism , Mutation , Mutation, Missense , Patch-Clamp Techniques , Phosphorylation
3.
Circulation ; 142(20): 1937-1955, 2020 11 17.
Article En | MEDLINE | ID: mdl-32929985

BACKGROUND: Calmodulin mutations are associated with arrhythmia syndromes in humans. Exome sequencing previously identified a de novo mutation in CALM1 resulting in a p.N98S substitution in a patient with sinus bradycardia and stress-induced bidirectional ventricular ectopy. The objectives of the present study were to determine if mice carrying the N98S mutation knocked into Calm1 replicate the human arrhythmia phenotype and to examine arrhythmia mechanisms. METHODS: Mouse lines heterozygous for the Calm1N98S allele (Calm1N98S/+) were generated using CRISPR/Cas9 technology. Adult mutant mice and their wildtype littermates (Calm1+/+) underwent electrocardiographic monitoring. Ventricular de- and repolarization was assessed in isolated hearts using optical voltage mapping. Action potentials and whole-cell currents and [Ca2+]i, as well, were measured in single ventricular myocytes using the patch-clamp technique and fluorescence microscopy, respectively. The microelectrode technique was used for in situ membrane voltage monitoring of ventricular conduction fibers. RESULTS: Two biologically independent knock-in mouse lines heterozygous for the Calm1N98S allele were generated. Calm1N98S/+ mice of either sex and line exhibited sinus bradycardia, QTc interval prolongation, and catecholaminergic bidirectional ventricular tachycardia. Male mutant mice also showed QRS widening. Pharmacological blockade and activation of ß-adrenergic receptors rescued and exacerbated, respectively, the long-QT phenotype of Calm1N98S/+ mice. Optical and electric assessment of membrane potential in isolated hearts and single left ventricular myocytes, respectively, revealed ß-adrenergically induced delay of repolarization. ß-Adrenergic stimulation increased peak density, slowed inactivation, and left-shifted the activation curve of ICa.L significantly more in Calm1N98S/+ versus Calm1+/+ ventricular myocytes, increasing late ICa.L in the former. Rapidly paced Calm1N98S/+ ventricular myocytes showed increased propensity to delayed afterdepolarization-induced triggered activity, whereas in situ His-Purkinje fibers exhibited increased susceptibility for pause-dependent early afterdepolarizations. Epicardial mapping of Calm1N98S/+ hearts showed that both reentry and focal mechanisms contribute to arrhythmogenesis. CONCLUSIONS: Heterozygosity for the Calm1N98S mutation is causative of an arrhythmia syndrome characterized by sinus bradycardia, QRS widening, adrenergically mediated QTc interval prolongation, and bidirectional ventricular tachycardia. ß-Adrenergically induced ICa.L dysregulation contributes to the long-QT phenotype. Pause-dependent early afterdepolarizations and tachycardia-induced delayed afterdepolarizations originating in the His-Purkinje network and ventricular myocytes, respectively, constitute potential sources of arrhythmia in Calm1N98S/+ hearts.


Calmodulin , Heart Ventricles/metabolism , Mutation, Missense , Myocytes, Cardiac/metabolism , Purkinje Fibers/metabolism , Sick Sinus Syndrome/congenital , Amino Acid Substitution , Animals , Calmodulin/genetics , Calmodulin/metabolism , Disease Models, Animal , Heart Ventricles/physiopathology , Humans , Male , Mice , Mice, Transgenic , Purkinje Fibers/physiopathology , Sick Sinus Syndrome/genetics , Sick Sinus Syndrome/metabolism , Sick Sinus Syndrome/physiopathology
4.
Heart Rhythm ; 13(7): 1527-35, 2016 07.
Article En | MEDLINE | ID: mdl-26961301

BACKGROUND: The melanin synthesis enzyme dopachrome tautomerase (Dct) regulates intracellular Ca(2+) in melanocytes. Homozygous Dct knockout (Dct(-/-)) adult mice are vulnerable to atrial arrhythmias (AA). OBJECTIVE: The purpose of this study was to determine whether apamin-sensitive small conductance Ca(2+)-activated K(+) (SK) currents are upregulated in Dct(-/-) mice and contribute to AA. METHODS: Optical mapping was used to study the membrane potential of the right atrium in Langendorff perfused Dct(-/-) (n = 9) and Dct(+/-) (n = 9) mice. RESULTS: Apamin prolonged action potential duration (APD) by 18.8 ms (95% confidence interval [CI] 13.4-24.1 ms) in Dct(-/-) mice and by 11.5 ms (95% CI 5.4-17.6 ms) in Dct(+/-) mice at a pacing cycle length of 150 ms (P = .047). The pacing cycle length threshold to induce APD alternans was 48 ms (95% CI 34-62 ms) for Dct(-/-) mice and 21 ms (95% CI 12-29 ms) for Dct(+/-) mice (P = .002) at baseline, and it was 35 ms (95% CI 21-49 ms) for Dct(-/-) mice and 22 ms (95% CI 11-32 ms) for Dct(+/-) mice (P = .025) after apamin administration. Apamin prolonged post-burst pacing APD by 8.9 ms (95% CI 3.9-14.0 ms) in Dct(-/-) mice and by 1.5 ms (95% CI 0.7-2.3 ms) in Dct(+/-) mice (P = .005). Immunoblot and quantitative polymerase chain reaction analyses showed that protein and transcripts levels of SK1 and SK3 were increased in the right atrium of Dct(-/-) mice. AA inducibility (89% vs 11%; P = .003) and duration (281 seconds vs 66 seconds; P = .008) were greater in Dct(-/-) mice than in Dct(+/-) mice at baseline, but not different (22% vs 11%; P = 1.00) after apamin administration. Five of 8 (63%) induced atrial fibrillation episodes in Dct(-/-) mice had focal drivers. CONCLUSION: Apamin-sensitive SK current upregulation in Dct(-/-) mice plays an important role in the mechanism of AA.


Atrial Fibrillation , Heart Atria , Heart Conduction System , Melanins/metabolism , Small-Conductance Calcium-Activated Potassium Channels/physiology , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Intramolecular Oxidoreductases/metabolism , Membrane Potentials/physiology , Mice , Statistics as Topic , Up-Regulation , Voltage-Sensitive Dye Imaging/methods
5.
Korean Circ J ; 46(1): 63-71, 2016 Jan.
Article En | MEDLINE | ID: mdl-26798387

BACKGROUND AND OBJECTIVES: Due to recent studies that have shown an association between the genetic variation of SCN5A and sick sinus syndrome (SSS), we sought to determine if a similar correlation existed in Korean patients with SSS. SUBJECTS AND METHODS: We enrolled 30 patients with SSS who showed a sinus pause (longer than 3.0 s) in Holter monitoring, in addition to 80 controls. All exons including the putative splicing sites of the SCN5A gene were amplified by polymerase chain reaction and sequenced either directly or following subcloning. Wild-type and single nucleotide polymorphisms were expressed in human embryonic kidney cells, and the peak sodium current (INa ) was analyzed using the whole-cell patch-clamp technique. RESULTS: A total of 9 genetic variations were identified: 7 variations (G87A-A29A, IVS9-3C>A, A1673G-H558R, G3823A-D1275N, T5457C-D1819D, T5963G-L1988R, and C5129T-S1710L) had been previously reported, and 2 variants (A3075T-E1025D and T4847A-F1616Y) were novel; the potential structural effects of F1616Y were analyzed in a three-dimensional model of the SCN5A domain. Patch-clamp studies at room temperature demonstrated that the peak INa was significantly increased by 140% in HEK cells transfected with F1616Y compared with wild-type (-335.13 pA/pF±24.04, n=8 vs. -139.95 pA/pF±23.76, n=7, respectively). Furthermore, the voltage dependency of the activation and steady-state inactivation of F1616Y were leftward-shifted compared with wild-type (Vh activation=-55.36 mv±0.22, n=8 vs. Vh activation=-44.21 mV±0.17, n=7; respectively; Vh inactivation=-104.47 mV±0.21, n=7 vs. Vh inactivation=-84.89 mV±0.09, n=12, respectively). CONCLUSION: F1616Y may be associated with SSS.

...