Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(15): 3837-3842, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28320948

ABSTRACT

Photosynthesis is responsible for the photochemical conversion of light into the chemical energy that fuels the planet Earth. The photochemical core of this process in all photosynthetic organisms is a transmembrane protein called the reaction center. In purple photosynthetic bacteria a simple version of this photoenzyme catalyzes the reduction of a quinone molecule, accompanied by the uptake of two protons from the cytoplasm. This results in the establishment of a proton concentration gradient across the lipid membrane, which can be ultimately harnessed to synthesize ATP. Herein we show that synthetic protocells, based on giant lipid vesicles embedding an oriented population of reaction centers, are capable of generating a photoinduced proton gradient across the membrane. Under continuous illumination, the protocells generate a gradient of 0.061 pH units per min, equivalent to a proton motive force of 3.6 mV⋅min-1 Remarkably, the facile reconstitution of the photosynthetic reaction center in the artificial lipid membrane, obtained by the droplet transfer method, paves the way for the construction of novel and more functional protocells for synthetic biology.


Subject(s)
Artificial Cells/chemistry , Photosynthesis/physiology , Photosynthetic Reaction Center Complex Proteins/chemistry , Protons , Catalysis , Hydrogen-Ion Concentration , Light , Proton-Motive Force , Quinones/chemistry
2.
ACS Appl Mater Interfaces ; 7(7): 3902-9, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25646868

ABSTRACT

Four linear terarylene molecules (i) 4-nitro-terphenyl-4″-methanethiol (NTM), (ii) 4-nitro-terphenyl-3″,5″-dimethanethiol (NTD), (iii) ([1,1';4',1″] terphenyl-3,5-diyl)methanethiol (TM), and (iv) ([1,1';4',1″] terphenyl-3,5-diyl)dimethanethiol (TD) have been synthesized and their self-assembled monolayers (SAMs) have been obtained on polycrystalline gold. NTM and NTD SAMs have been characterized by X-ray photoelectron spectroscopy, Kelvin probe measurements, electrochemistry, and contact angle measurements. The terminal nitro group (-NO2) is irreversibly reduced to hydroxylamine (-NHOH), which can be reversibly turned into nitroso group (-NO). The direct comparison between NTM/NTD and TM/TD SAMs unambiguously shows the crucial influence of the nitro group on electrowetting properties of polycrystalline Au. The higher grade of surface tension related to NHOH has been successfully exploited for basic operations of digital µ-fluidics, such as droplets motion and merging.

3.
ACS Appl Mater Interfaces ; 6(1): 153-8, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24328296

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) were suspended in 1,2-dichloroethane by noncovalent functionalization with a low-band-gap conjugated polymer 1 alternating dialkoxyphenylene-bisthiophene units with benzo[c][2,1,3]thiadiazole monomeric units. The suspended 1/SWCNT blend was transferred onto different solid substrates by the Langmuir-Schaefer deposition method, resulting in films with a high percentage of aligned nanotubes. Photoelectrochemical characterization of 1/SWCNT thin films on indium-tin oxide showed the benefits of SWCNT alignment for photoconversion efficiency.

4.
J Nanosci Nanotechnol ; 14(9): 6732-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25924324

ABSTRACT

The synthetic conjugated poly(1,4-arylene-2,5-thienylene) containing benzo[c][2,1,3]thiadiazole monomeric units (Bz-PAT) is proposed as active layer for the selective detection of mercuric ions. The Bz-PAT polymer chemical structure induces the formation of a disordered film with numerous vacancies and the size of these defects could be exploited for a reversible trapping of mercuric ions. For these reasons the Langmuir-Schaefer (LS) deposition method has been employed for transferring Bz-PAT layers with the desired accurate bi-dimensional organization control of the layer and with a high control of the deposition parameters. In this contribution, the frequency variation of quartz crystal microbalances functionalized with 10, 20, 30 and 40 LS runs of Bz-PAT have been investigated in response to the injection of aqueous solutions of HgCl2, Pb(NO3)2, NiCl2, CdCl2 and ZnSO4 at different concentrations (0.5 mM, 1 mM, 5 mM). An almost linear dependence on the number of the LS layers and hence on the film thickness, measured by means of ellipsometric spectroscopy, has been found in terms of sensor response to concentration of Hg2+ ions fluxed. By means of UV-Vis spectroscopy, the variations in the π-π* absorption band of the polymer, attributed to the thiophene segment, induced by HgCl2 injection has been analyzed and explained as a consequence of the electron transfer from the mercuric ion to the polymer solid film. These results, together with the linear relation found between the number of deposited layers and LS film thickness, suggest that the sensing mechanism can be explained both by an electron interaction between active layer and analyte and a diffusion mechanism of Hg2+ into the solid film that reaches an asymptotic value at 30 runs (about 80 nm), then a higher number of layers does not influence the sensor sensibility.


Subject(s)
Ions/chemistry , Mercury/chemistry , Polymers/chemistry , Quartz Crystal Microbalance Techniques/methods , Spectrum Analysis/methods , Ions/analysis , Mercury/analysis
5.
Chemistry ; 15(1): 136-48, 2009.
Article in English | MEDLINE | ID: mdl-19021161

ABSTRACT

The synthesis and photophysical and electrochemical characterisation of new heteroleptic iridium complexes with electron-withdrawing sulfonyl groups and fluorine atoms bound to phenylpyridine ligands are reported. The emission energy of these materials strongly depends on the position of the sulfonyl groups and on the number of fluorine substituents. A 90 nm wide tuning range of photoluminescence from the blue-green (lambda(em)=468 nm) of iridium(III)bis[2-(4'-benzylsulfonyl)phenylpyridinato-N,C2'][3-(pentafluorophenyl)-pyridin-2-yl-1,2,4-triazolate] to the orange (lambda(em)=558 nm) of iridium(III)bis[2-(3'-benzylsulfonyl)phenylpyridinato-N,C2'](2,4-decanedionate) has been achieved. Emission quantum yields ranging from 47 to 71% have also been found for degassed solutions of the complexes, and a surprisingly high value of 16% was recorded for iridium(III)bis[2-(5'-benzylsulfonyl-3',6'-difluoro)phenylpyridinato-N,C2'](2,4-decanedionate) in air-equilibrated dichloromethane. A unusual stereochemistry of the benzylsulfonyl-substituted dimer and heteroleptic complexes has been detected by (1)H NMR spectroscopy, and is characterised by the mutual cis disposition of the pyridyl nitrogen atoms of the phenylpyridine ligands, which differs from the most common trans arrangement reported in the literature.

6.
Nat Mater ; 7(5): 412-7, 2008 May.
Article in English | MEDLINE | ID: mdl-18425136

ABSTRACT

Organic thin-film transistor sensors have been recently attracting the attention of the plastic electronics community for their potential exploitation in novel sensing platforms. Specificity and sensitivity are however still open issues: in this respect chiral discrimination-being a scientific and technological achievement in itself--is indeed one of the most challenging sensor bench-tests. So far, conducting-polymer solid-state chiral detection has been carried out at part-per-thousand concentration levels. Here, a novel chiral bilayer organic thin-film transistor gas sensor--comprising an outermost layer with built-in enantioselective properties-is demonstrated to show field-effect amplified sensitivity that enables differential detection of optical isomers in the tens-of-parts-per-million concentration range. The ad-hoc-designed organic semiconductor endowed with chiral side groups, the bilayer structure and the thin-film transistor transducer provide a significant step forward in the development of a high-performance and versatile sensing platform compatible with flexible organic electronic technologies.

7.
J Org Chem ; 72(26): 10272-5, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18044921

ABSTRACT

Oligoarylenes with three or four aromatic rings, bearing two S-acetylated mercaptomethyl groups in 1,3 position on one end of the polyaromatic system and presenting various functionalities on the other terminal ring, have been synthesized by the Suzuki-Miyaura cross-coupling reaction. The use of palladium complexes with a Buchwald's phosphine as ligand allowed us to perform this coupling reaction also in the presence of benzylic S-acetyl-protected functionalities on the aromatic halide. The obtained oligoarylenes are potential novel candidates for the generation of self-assembling monolayers on metal substrates.


Subject(s)
Benzene Derivatives/chemistry , Hydrocarbons, Chlorinated/chemistry , Sulfhydryl Compounds/chemistry , Terphenyl Compounds/chemical synthesis , Ligands , Molecular Structure , Stereoisomerism
8.
Chem Commun (Camb) ; (1): 130-1, 2003 Jan 07.
Article in English | MEDLINE | ID: mdl-12611000

ABSTRACT

A series of poly(aryleneethynylene)s functionalized with acetylated glucopyranosyl units were synthesized by the Pd-catalyzed reaction of trimethylsilylethynyl derivatives with aromatic halides in the presence of silver oxide.

SELECTION OF CITATIONS
SEARCH DETAIL