Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
2.
Mol Genet Metab ; 139(3): 107624, 2023 07.
Article En | MEDLINE | ID: mdl-37348148

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive genetic disorder affecting the biosynthesis of dopamine, a precursor of both norepinephrine and epinephrine, and serotonin. Diagnosis is based on the analysis of CSF or plasma metabolites, AADC activity in plasma and genetic testing for variants in the DDC gene. The exact prevalence of AADC deficiency, the number of patients, and the variant and genotype prevalence are not known. Here, we present the DDC variant (n = 143) and genotype (n = 151) prevalence of 348 patients with AADC deficiency, 121 of whom were previously not reported. In addition, we report 26 new DDC variants, classify them according to the ACMG/AMP/ACGS recommendations for pathogenicity and score them based on the predicted structural effect. The splice variant c.714+4A>T, with a founder effect in Taiwan and China, was the most common variant (allele frequency = 32.4%), and c.[714+4A>T];[714+4A>T] was the most common genotype (genotype frequency = 21.3%). Approximately 90% of genotypes had variants classified as pathogenic or likely pathogenic, while 7% had one VUS allele and 3% had two VUS alleles. Only one benign variant was reported. Homozygous and compound heterozygous genotypes were interpreted in terms of AADC protein and categorized as: i) devoid of full-length AADC, ii) bearing one type of AADC homodimeric variant or iii) producing an AADC protein population composed of two homodimeric and one heterodimeric variant. Based on structural features, a score was attributed for all homodimers, and a tentative prediction was advanced for the heterodimer. Almost all AADC protein variants were pathogenic or likely pathogenic.


Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases , Humans , Prevalence , Dopamine/metabolism , Genotype , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acids/genetics
3.
Epilepsy Behav ; 145: 109266, 2023 08.
Article En | MEDLINE | ID: mdl-37385119

Zellweger spectrum disorders (ZSD) are rare autosomal recessive disorders caused by defects in peroxisome biogenesis factor (PEX; peroxin) genes leading to impaired transport of peroxisomal proteins with peroxisomal targeting signals (PTS). Four patients, including a pair of homozygotic twins, diagnosed as ZSD by genetic study with different clinical presentations and outcomes as well as various novel mutations are described here. A total of 3 novel mutations, including a nonsense, a frameshift, and a splicing mutation, in PEX1 from ZSD patients were identified and unequivocally confirmed that the p.Ile989Thr mutant PEX1 exhibited temperature-sensitive characteristics and is associated with milder ZSD. The nature of the p.Ile989Thr mutant exhibited different characteristics from that of the other previously identified temperature-sensitive p.Gly843Asp PEX1 mutant. Transcriptome profiles under nonpermissive vs. permissive conditions were explored to facilitate the understanding of p.Ile989Thr mutant PEX1. Further investigation of molecular mechanisms may help to clarify potential genetic causes that could modify the clinical presentation of ZSD.


Zellweger Syndrome , Humans , Child , Zellweger Syndrome/genetics , Zellweger Syndrome/complications , Zellweger Syndrome/metabolism , Temperature , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Fibroblasts/metabolism , Mutation/genetics
4.
J Hum Genet ; 64(12): 1173-1186, 2019 Dec.
Article En | MEDLINE | ID: mdl-31530938

Coffin-Siris syndrome (CSS, MIM#135900) is a congenital disorder characterized by coarse facial features, intellectual disability, and hypoplasia of the fifth digit and nails. Pathogenic variants for CSS have been found in genes encoding proteins in the BAF (BRG1-associated factor) chromatin-remodeling complex. To date, more than 150 CSS patients with pathogenic variants in nine BAF-related genes have been reported. We previously reported 71 patients of whom 39 had pathogenic variants. Since then, we have recruited an additional 182 CSS-suspected patients. We performed comprehensive genetic analysis on these 182 patients and on the previously unresolved 32 patients, targeting pathogenic single nucleotide variants, short insertions/deletions and copy number variations (CNVs). We confirmed 78 pathogenic variations in 78 patients. Pathogenic variations in ARID1B, SMARCB1, SMARCA4, ARID1A, SOX11, SMARCE1, and PHF6 were identified in 48, 8, 7, 6, 4, 1, and 1 patients, respectively. In addition, we found three CNVs including SMARCA2. Of particular note, we found a partial deletion of SMARCB1 in one CSS patient and we thoroughly investigated the resulting abnormal transcripts.


Abnormalities, Multiple/genetics , Face/abnormalities , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Micrognathism/genetics , Neck/abnormalities , Cohort Studies , Genetic Association Studies/methods , Humans
5.
Sci Rep ; 6: 30072, 2016 07 20.
Article En | MEDLINE | ID: mdl-27436767

Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K(+)-Cl(-) co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl(-) extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl(-) level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl(-) extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS.


Mutation , Seizures/pathology , Seizures/physiopathology , Symporters/genetics , Symporters/metabolism , Adult , Biological Transport , Child, Preschool , Chlorides/metabolism , Female , Humans , Infant , Male , Polymorphism, Single Nucleotide , Sequence Deletion , Young Adult
6.
Eur J Pediatr ; 172(9): 1277-81, 2013 Sep.
Article En | MEDLINE | ID: mdl-23358709

UNLABELLED: Lysinuric protein intolerance (LPI; MIM 222700) is an inherited aminoaciduria with an autosomal recessive mode of inheritance. Biochemically, affected patients present with increased excretion of the cationic amino acids: lysine, arginine, and ornithine. We report the first case of LPI diagnosed in Malaysia presented with excessive excretion of homocitrulline. The patient was a 4-year-old male who presented with delayed milestones, recurrent diarrhea, and severe failure to thrive. He developed hyperammonemic coma following a forced protein-rich diet. Plasma amino acid analysis showed increased glutamine, alanine, and citrulline but decreased lysine, arginine and ornithine. Urine amino acids showed a marked excretion of lysine and ornithine together with a large peak of unknown metabolite which was subsequently identified as homocitrulline by tandem mass spectrometry. Molecular analysis confirmed a previously unreported homozygous mutation at exon 1 (235 G > A, p.Gly79Arg) in the SLC7A7 gene. This report demonstrates a novel mutation in the SLC7A7 gene in this rare inborn error of diamino acid metabolism. It also highlights the importance of early and efficient treatment of infections and dehydration in these patients. CONCLUSION: The diagnosis of LPI is usually not suspected by clinical findings alone, and specific laboratory investigations and molecular analysis are important to get a definitive diagnosis.


Amino Acid Metabolism, Inborn Errors/diagnosis , Citrulline/analogs & derivatives , Fusion Regulatory Protein 1, Light Chains/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/urine , Amino Acid Transport System y+L , Biomarkers/urine , Child, Preschool , Citrulline/urine , Genetic Markers , Genetic Testing , Humans , Malaysia , Male , Point Mutation
...