Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 7212, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38532013

ABSTRACT

The endovascular neural interface provides an appealing minimally invasive alternative to invasive brain electrodes for recording and stimulation. However, stents placed in blood vessels have long been known to affect blood flow (haemodynamics) and lead to neointimal growth within the blood vessel. Both the stent elements (struts and electrodes) and blood vessel wall geometries can affect the mechanical environment on the blood vessel wall, which could lead to unfavourable vascular remodelling after stent placement. With increasing applications of stents and stent-like neural interfaces in venous blood vessels in the brain, it is necessary to understand how stents affect blood flow and tissue growth in veins. We explored the haemodynamics of a stent-mounted neural interface in a blood vessel model. Results indicated that blood vessel deformation and tapering caused a substantial change to the lumen geometry and the haemodynamics. The neointimal proliferation was evaluated in sheep implanted with an endovascular neural interface. Analysis showed a negative correlation with the mean Wall Shear Stress pattern. The results presented here indicate that the optimal stent oversizing ratio must be considered to minimise the haemodynamic impact of stenting.


Subject(s)
Hemodynamics , Stents , Animals , Sheep , Coronary Circulation/physiology , Neointima
2.
Stroke ; 55(2): 474-483, 2024 02.
Article in English | MEDLINE | ID: mdl-38018832

ABSTRACT

Stroke is a leading cause of paralysis, most frequently affecting the upper limbs and vocal folds. Despite recent advances in care, stroke recovery invariably reaches a plateau, after which there are permanent neurological impairments. Implantable brain-computer interface devices offer the potential to bypass permanent neurological lesions. They function by (1) recording neural activity, (2) decoding the neural signal occurring in response to volitional motor intentions, and (3) generating digital control signals that may be used to control external devices. While brain-computer interface technology has the potential to revolutionize neurological care, clinical translation has been limited. Endovascular arrays present a novel form of minimally invasive brain-computer interface devices that have been deployed in human subjects during early feasibility studies. This article provides an overview of endovascular brain-computer interface devices and critically evaluates the patient with stroke as an implant candidate. Future opportunities are mapped, along with the challenges arising when decoding neural activity following infarction. Limitations arise when considering intracerebral hemorrhage and motor cortex lesions; however, future directions are outlined that aim to address these challenges.


Subject(s)
Brain-Computer Interfaces , Stroke Rehabilitation , Stroke , Humans , Paralysis/etiology , Stroke/complications , Prostheses and Implants
3.
JAMA Neurol ; 80(3): 270-278, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36622685

ABSTRACT

Importance: Brain-computer interface (BCI) implants have previously required craniotomy to deliver penetrating or surface electrodes to the brain. Whether a minimally invasive endovascular technique to deliver recording electrodes through the jugular vein to superior sagittal sinus is safe and feasible is unknown. Objective: To assess the safety of an endovascular BCI and feasibility of using the system to control a computer by thought. Design, Setting, and Participants: The Stentrode With Thought-Controlled Digital Switch (SWITCH) study, a single-center, prospective, first in-human study, evaluated 5 patients with severe bilateral upper-limb paralysis, with a follow-up of 12 months. From a referred sample, 4 patients with amyotrophic lateral sclerosis and 1 with primary lateral sclerosis met inclusion criteria and were enrolled in the study. Surgical procedures and follow-up visits were performed at the Royal Melbourne Hospital, Parkville, Australia. Training sessions were performed at patients' homes and at a university clinic. The study start date was May 27, 2019, and final follow-up was completed January 9, 2022. Interventions: Recording devices were delivered via catheter and connected to subcutaneous electronic units. Devices communicated wirelessly to an external device for personal computer control. Main Outcomes and Measures: The primary safety end point was device-related serious adverse events resulting in death or permanent increased disability. Secondary end points were blood vessel occlusion and device migration. Exploratory end points were signal fidelity and stability over 12 months, number of distinct commands created by neuronal activity, and use of system for digital device control. Results: Of 4 patients included in analyses, all were male, and the mean (SD) age was 61 (17) years. Patients with preserved motor cortex activity and suitable venous anatomy were implanted. Each completed 12-month follow-up with no serious adverse events and no vessel occlusion or device migration. Mean (SD) signal bandwidth was 233 (16) Hz and was stable throughout study in all 4 patients (SD range across all sessions, 7-32 Hz). At least 5 attempted movement types were decoded offline, and each patient successfully controlled a computer with the BCI. Conclusions and Relevance: Endovascular access to the sensorimotor cortex is an alternative to placing BCI electrodes in or on the dura by open-brain surgery. These final safety and feasibility data from the first in-human SWITCH study indicate that it is possible to record neural signals from a blood vessel. The favorable safety profile could promote wider and more rapid translation of BCI to people with paralysis. Trial Registration: ClinicalTrials.gov Identifier: NCT03834857.


Subject(s)
Brain-Computer Interfaces , Aged , Humans , Male , Middle Aged , Brain , Cerebral Cortex , Paralysis/etiology , Prospective Studies
4.
J Neural Eng ; 19(5)2022 10 28.
Article in English | MEDLINE | ID: mdl-36240737

ABSTRACT

Objective.The aim of this work was to assess vascular remodeling after the placement of an endovascular neural interface (ENI) in the superior sagittal sinus (SSS) of sheep. We also assessed the efficacy of neural recording using an ENI.Approach.The study used histological analysis to assess the composition of the foreign body response. Micro-CT images were analyzed to assess the profiles of the foreign body response and create a model of a blood vessel. Computational fluid dynamic modeling was performed on a reconstructed blood vessel to evaluate the blood flow within the vessel. Recording of brain activity in sheep was used to evaluate efficacy of neural recordings.Main results.Histological analysis showed accumulated extracellular matrix material in and around the implanted ENI. The extracellular matrix contained numerous macrophages, foreign body giant cells, and new vascular channels lined by endothelium. Image analysis of CT slices demonstrated an uneven narrowing of the SSS lumen proportional to the stent material within the blood vessel. However, the foreign body response did not occlude blood flow. The ENI was able to record epileptiform spiking activity with distinct spike morphologies.Significance. This is the first study to show high-resolution tissue profiles, the histological response to an implanted ENI and blood flow dynamic modeling based on blood vessels implanted with an ENI. The results from this study can be used to guide surgical planning and future ENI designs; stent oversizing parameters to blood vessel diameter should be considered to minimize detrimental vascular remodeling.


Subject(s)
Endovascular Procedures , Foreign Bodies , Animals , Sheep , Vascular Remodeling , Stents , Superior Sagittal Sinus
5.
Artif Organs ; 46(3): 337-348, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34101849

ABSTRACT

Over the last few decades, biomedical implants have successfully delivered therapeutic electrical stimulation to reduce the frequency and severity of seizures in people with drug-resistant epilepsy. However, neurostimulation approaches require invasive surgery to implant stimulating electrodes, and surgical, medical, and hardware complications are not uncommon. An endovascular approach provides a potentially safer and less invasive surgical alternative. This article critically evaluates the feasibility of endovascular closed-loop neuromodulation for the treatment of epilepsy. By reviewing literature that reported the impact of direct electrical stimulation to reduce the frequency of epileptic seizures, we identified clinically validated extracranial, cortical, and deep cortical neural targets. We identified veins in close proximity to these targets and evaluated the potential of delivering an endovascular implant to these veins based on their diameter. We then compared the risks and benefits of existing technology to describe a benchmark of clinical safety and efficacy that would need to be achieved for endovascular neuromodulation to provide therapeutic benefit. For the majority of brain regions that have been clinically demonstrated to reduce seizure occurrence in response to delivered electrical stimulation, vessels of appropriate diameter for delivery of an endovascular electrode to these regions could be achieved. This includes delivery to the vagus nerve via the 13.2 ± 0.9 mm diameter internal jugular vein, the motor cortex via the 6.5 ± 1.7 mm diameter superior sagittal sinus, and the cerebellum via the 7.7 ± 1.4 mm diameter sigmoid sinus or 6.2 ± 1.4 mm diameter transverse sinus. Deep cerebral targets can also be accessed with an endovascular approach, with the 1.9 ± 0.5 mm diameter internal cerebral vein and 1.2-mm-diameter thalamostriate vein lying in close proximity to the anterior and centromedian nuclei of the thalamus, respectively. This work identified numerous veins that are in close proximity to conventional stimulation targets that are of a diameter large enough for delivery and deployment of an endovascular electrode array, supporting future work to assess clinical efficacy and chronic safety of an endovascular approach to deliver therapeutic neurostimulation.


Subject(s)
Electric Stimulation Therapy/methods , Electrodes, Implanted , Endovascular Procedures , Epilepsy/therapy , Brain/blood supply , Cerebrovascular Circulation , Drug Resistance , Humans
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5686-5689, 2021 11.
Article in English | MEDLINE | ID: mdl-34892412

ABSTRACT

AIM: Brain-Computer Interfaces (BCIs) hold promise to provide people with partial or complete paralysis, the ability to control assistive technology. This study reports offline classification of imagined and executed movements of the upper and lower limb in one participant with multiple sclerosis and people with no limb function deficits. METHODS: We collected neural signals using electroencephalography (EEG) while participants performed executed and imagined motor tasks as directed by prompts shown on a screen. RESULTS: Participants with no limb function attained >70% decoding accuracy on their best-imagined task compared to rest and on at-least one task comparison. The participant with multiple sclerosis also achieved accuracies within the range of participants with no limb function loss.Clinical Relevance - While only one case study is provided it was promising that the participant with MS was able to achieve comparable classification to that of the seven healthy controls. Further studies are needed to assess whether people suffering from MS may be able to use a BCI to improve their quality of life.


Subject(s)
Brain-Computer Interfaces , Multiple Sclerosis , Electroencephalography , Feasibility Studies , Humans , Quality of Life
7.
J Neurointerv Surg ; 13(2): 102-108, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33115813

ABSTRACT

BACKGROUND: Implantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation. METHODS: Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks. RESULTS: Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants. CONCLUSION: We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis.


Subject(s)
Activities of Daily Living , Brain-Computer Interfaces , Implantable Neurostimulators , Motor Cortex/physiology , Paralysis/therapy , Severity of Illness Index , Activities of Daily Living/psychology , Aged , Brain-Computer Interfaces/psychology , Feasibility Studies , Female , Humans , Imaging, Three-Dimensional/methods , Male , Middle Aged , Motor Cortex/diagnostic imaging , Paralysis/diagnostic imaging , Paralysis/physiopathology , Prospective Studies
8.
J Neural Eng ; 17(4): 045014, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32659750

ABSTRACT

OBJECTIVE: Due to their increased proximity to retinal ganglion cells (RGCs), epiretinal visual prostheses present the opportunity for eliciting phosphenes with low thresholds through direct RGC activation. This study characterised the in vivo performance of a novel prototype monolithic epiretinal prosthesis, containing Nitrogen incorporated ultrananocrystalline (N-UNCD) diamond electrodes. APPROACH: A prototype implant containing up to twenty-five 120 × 120 µm N-UNCD electrodes was implanted into 16 anaesthetised cats and attached to the retina either using a single tack or via magnetic coupling with a suprachoroidally placed magnet. Multiunit responses to retinal stimulation using charge-balanced biphasic current pulses were recorded acutely in the visual cortex using a multichannel planar array. Several stimulus parameters were varied including; the stimulating electrode, stimulus polarity, phase duration, return configuration and the number of electrodes stimulated simultaneously. MAIN RESULTS: The rigid nature of the device and its form factor necessitated complex surgical procedures. Surgeries were considered successful in 10/16 animals and cortical responses to single electrode stimulation obtained in eight animals. Clinical imaging and histological outcomes showed severe retinal trauma caused by the device in situ in many instances. Cortical measures were found to significantly depend on the surgical outcomes of individual experiments, phase duration, return configuration and the number of electrodes stimulated simultaneously, but not stimulus polarity. Cortical thresholds were also found to increase over time within an experiment. SIGNIFICANCE: The study successfully demonstrated that an epiretinal prosthesis containing diamond electrodes could produce cortical activity with high precision, albeit only in a small number of cases. Both surgical approaches were highly challenging in terms of reliable and consistent attachment to and stabilisation against the retina, and often resulted in severe retinal trauma. There are key challenges (device form factor and attachment technique) to be resolved for such a device to progress towards clinical application, as current surgical techniques are unable to address these issues.


Subject(s)
Diamond , Visual Prosthesis , Animals , Cats , Electric Stimulation , Electrodes , Electrodes, Implanted , Feasibility Studies , Retina
9.
Front Behav Neurosci ; 14: 77, 2020.
Article in English | MEDLINE | ID: mdl-32581737

ABSTRACT

There is evidence to suggest that motor execution and motor imagery both involve planning and execution of the same motor plan, however, in the latter the output is inhibited. Currently, little is known about the underlying neural mechanisms of motor output inhibition during motor imagery. Uncovering the distinctive characteristics of motor imagery may help us better understand how we abstract complex thoughts and acquire new motor skills. The current study aimed to dissociate the cognitive processes involved in two distinct inhibitory mechanisms of motor inhibition and motor imagery restraint. Eleven healthy participants engaged in an imagined GO/NO-GO task during a 7 Tesla fMRI experiment. Participants planned a specific type of motor imagery, then, imagined the movements during the GO condition and restrained from making a response during the NO-GO condition. The results revealed that specific sub-regions of the supplementary motor cortex (SMC) and the primary motor cortex (M1) were recruited during the imagination of specific movements and information flowed from the SMC to the M1. Such condition-specific recruitment was not observed when motor imagery was restrained. Instead, general recruitment of the posterior parietal cortex (PPC) was observed, while the BOLD activity in the SMC and the M1 decreased below the baseline at the same time. Information flowed from the PPC to the SMC, and recurrently between the M1 and the SMC, and the M1 and the PPC. These results suggest that motor imagery involves task-specific motor output inhibition partly imposed by the SMC to the M1, while the PPC globally inhibits motor plans before they are passed on for execution during the restraint of responses.

10.
Front Neurol ; 11: 351, 2020.
Article in English | MEDLINE | ID: mdl-32390937

ABSTRACT

Endovascular neuromodulation is an emerging technology that represents a synthesis between interventional neurology and neural engineering. The prototypical endovascular neural interface is the StentrodeTM, a stent-electrode array which can be implanted into the superior sagittal sinus via percutaneous catheter venography, and transmits signals through a transvenous lead to a receiver located subcutaneously in the chest. Whilst the StentrodeTM has been conceptually validated in ovine models, questions remain about the long term viability and safety of this device in human recipients. Although technical precedence for venous sinus stenting already exists in the setting of idiopathic intracranial hypertension, long term implantation of a lead within the intracranial veins has never been previously achieved. Contrastingly, transvenous leads have been successfully employed for decades in the setting of implantable cardiac pacemakers and defibrillators. In the current absence of human data on the StentrodeTM, the literature on these structurally comparable devices provides valuable lessons that can be translated to the setting of endovascular neuromodulation. This review will explore this literature in order to understand the potential risks of the StentrodeTM and define avenues where further research and development are necessary in order to optimize this device for human application.

11.
Neurosurgery ; 86(2): E108-E117, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31361011

ABSTRACT

Brain-computer interface (BCI) technology is rapidly developing and changing the paradigm of neurorestoration by linking cortical activity with control of an external effector to provide patients with tangible improvements in their ability to interact with the environment. The sensor component of a BCI circuit dictates the resolution of brain pattern recognition and therefore plays an integral role in the technology. Several sensor modalities are currently in use for BCI applications and are broadly either electrode-based or functional neuroimaging-based. Sensors vary in their inherent spatial and temporal resolutions, as well as in practical aspects such as invasiveness, portability, and maintenance. Hybrid BCI systems with multimodal sensory inputs represent a promising development in the field allowing for complimentary function. Artificial intelligence and deep learning algorithms have been applied to BCI systems to achieve faster and more accurate classifications of sensory input and improve user performance in various tasks. Neurofeedback is an important advancement in the field that has been implemented in several types of BCI systems by showing users a real-time display of their recorded brain activity during a task to facilitate their control over their own cortical activity. In this way, neurofeedback has improved BCI classification and enhanced user control over BCI output. Taken together, BCI systems have progressed significantly in recent years in terms of accuracy, speed, and communication. Understanding the sensory components of a BCI is essential for neurosurgeons and clinicians as they help advance this technology in the clinical setting.


Subject(s)
Algorithms , Brain-Computer Interfaces/trends , Brain/physiology , Artificial Intelligence/trends , Brain/diagnostic imaging , Electrocorticography/methods , Electrocorticography/trends , Electrodes, Implanted , Electroencephalography/methods , Electroencephalography/trends , Humans , Neuroimaging/methods , Neuroimaging/trends
12.
IEEE Trans Biomed Eng ; 66(3): 675-681, 2019 03.
Article in English | MEDLINE | ID: mdl-30004867

ABSTRACT

OBJECTIVE: Neural prostheses are improving the quality of life for those suffering from neurological impairments. Electrocorticography electrodes located in subdural, epidural, and intravascular positions show promise as long-term neural prostheses. However, chronic implantation affects the electrochemical environments of these arrays. METHODS: In the present work, the effect of electrode location on the electrochemical properties of the interface was compared. The impedances of the electrode arrays were measured using electrochemical impedance spectroscopy in vitro in saline and in vivo four-week postimplantation. RESULTS: There was not a significant effect of electrode location (subdural, intravascular, or epidural) on the impedance magnitude, and the effect of the electrode size on the impedance magnitude was frequency dependent. There was a frequency-dependent statistically significant effect of electrode location and electrode size on the phase angles of the three arrays. The subdural and epidural arrays showed phase shifts closer to -90° indicating the capacitive nature of the interface in these locations. The impact of placing electrodes within a blood vessel and adjacent to the blood vessel wall was most obvious when looking at the phase responses at frequencies below 10 kHz. CONCLUSION: Our results show that intravascular electrodes, like those in subdural and epidural positions, show electrical properties that are suitable for recording. These results provide support for the use of intravascular arrays in clinically relevant neural prostheses and diagnostic devices. SIGNIFICANCE: Comparison of electrochemical impedance of the epidural, intravascular, and subdural electrode array showed that all three locations are possible placement options, since impedances are in comparable ranges.


Subject(s)
Dielectric Spectroscopy/methods , Electric Impedance , Neural Prostheses , Animals , Brain/blood supply , Brain/physiology , Endovascular Procedures , Epidural Space/physiology , Sheep
13.
Sci Rep ; 8(1): 17469, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30478430

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1074-1077, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440577

ABSTRACT

Access to the brain to implant recording electrodes has conventionally required a craniotomy. To mitigate risks of open brain surgery, we previously developed a stent-electrode array that can be delivered to the cortex via cerebral vessels. Following implantation of a stent-electrode array (Stentrode) in a large animal model, we investigated the longevity of highquality signals, by measuring bandwidth in animals implanted for up to six months; no signal degradation was observed. We also investigated whether bandwidth was influenced by implant location with respect to the superior sagittal sinus and branching cortical veins; it was not. Finally, we assessed whether electrode orientation had an impact on recording quality. There was no significant difference in bandwidths from electrodes facing different orientations. Interestingly, electrodes facing the skull (180°) were still able to record neural information with high fidelity. Consequently, a minimally invasive surgical approach combined with a stent-electrode array is a safe and efficacious technique to acquire neural signals over a chronic duration.


Subject(s)
Cerebral Cortex , Stents , Animals , Brain , Electrodes, Implanted
15.
Sci Rep ; 8(1): 15556, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30349004

ABSTRACT

Invasive Brain-Computer Interfaces (BCIs) require surgeries with high health-risks. The risk-to-benefit ratio of the procedure could potentially be improved by pre-surgically identifying the ideal locations for mental strategy classification. We recorded high-spatiotemporal resolution blood-oxygenation-level-dependent (BOLD) signals using functional MRI at 7 Tesla in eleven healthy participants during two motor imagery tasks. BCI diagnostic task isolated the intent to imagine movements, while BCI simulation task simulated the neural states that may be yielded in a real-life BCI-operation scenario. Imagination of movements were classified from the BOLD signals in sub-regions of activation within a single or multiple dorsal motor network regions. Then, the participant's decoding performance during the BCI simulation task was predicted from the BCI diagnostic task. The results revealed that drawing information from multiple regions compared to a single region increased the classification accuracy of imagined movements. Importantly, systematic unimodal and multimodal classification revealed the ideal combination of regions that yielded the best classification accuracy at the individual-level. Lastly, a given participant's decoding performance achieved during the BCI simulation task could be predicted from the BCI diagnostic task. These results show the feasibility of 7T-fMRI with unimodal and multimodal classification being utilized for identifying ideal sites for mental strategy classification.


Subject(s)
Brain-Computer Interfaces , Imagination , Magnetic Resonance Imaging/methods , Movement , Adult , Brain/physiology , Feasibility Studies , Female , Humans , Magnetic Resonance Imaging/standards , Male , Psychomotor Performance
16.
Sci Rep ; 8(1): 8427, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849104

ABSTRACT

Recent work has demonstrated the feasibility of minimally-invasive implantation of electrodes into a cortical blood vessel. However, the effect of the dura and blood vessel on recording signal quality is not understood and may be a critical factor impacting implementation of a closed-loop endovascular neuromodulation system. The present work compares the performance and recording signal quality of a minimally-invasive endovascular neural interface with conventional subdural and epidural interfaces. We compared bandwidth, signal-to-noise ratio, and spatial resolution of recorded cortical signals using subdural, epidural and endovascular arrays four weeks after implantation in sheep. We show that the quality of the signals (bandwidth and signal-to-noise ratio) of the endovascular neural interface is not significantly different from conventional neural sensors. However, the spatial resolution depends on the array location and the frequency of recording. We also show that there is a direct correlation between the signal-noise-ratio and classification accuracy, and that decoding accuracy is comparable between electrode arrays. These results support the consideration for use of an endovascular neural interface in a clinical trial of a novel closed-loop neuromodulation technology.


Subject(s)
Blood Vessels , Brain-Computer Interfaces , Dura Mater , Epidural Space , Animals , Electrodes, Implanted , Evoked Potentials , Signal-To-Noise Ratio
17.
MAGMA ; 31(5): 621-632, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29845434

ABSTRACT

OBJECTIVE: Ultra-high-field functional MRI (UHF-fMRI) allows for higher spatiotemporal resolution imaging. However, higher-resolution imaging entails coverage limitations. Processing partial-coverage images using standard pipelines leads to sub-optimal results. We aimed to develop a simple, semi-automated pipeline for processing partial-coverage UHF-fMRI data using widely used image processing algorithms. MATERIALS AND METHODS: We developed automated pipelines for optimized skull stripping and co-registration of partial-coverage UHF functional images, using built-in functions of the Centre for Functional Magnetic Resonance Imaging of the Brain's (FMRIB's) Software library (FSL) and advanced normalization tools. We incorporated the pipelines into the FSL's functional analysis pipeline and provide a semi-automated optimized partial-coverage functional analysis pipeline (OPFAP). RESULTS: Compared to the standard pipeline, the OPFAP yielded images with 15 and 30% greater volume of non-zero voxels after skull stripping the functional and anatomical images, respectively (all p = 0.0004), which reflected the conservation of cortical voxels lost when the standard pipeline was used. The OPFAP yielded the greatest Dice and Jaccard coefficients (87 and 80%, respectively; all p < 0.0001) between the co-registered participant gyri maps and the template gyri maps, demonstrating the goodness of the co-registration results. Furthermore, the greatest volume of group-level activation in the most number of functionally relevant regions was observed when the OPFAP was used. Importantly, group-level activations were not observed when using the standard pipeline. CONCLUSION: These results suggest that the OPFAP should be used for processing partial-coverage UHF-fMRI data for detecting high-resolution macroscopic blood oxygenation level-dependent activations.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neuroimaging , Adult , Algorithms , Female , Healthy Volunteers , Humans , Imaging, Three-Dimensional , Male , Oxygen/chemistry , Software , Young Adult
18.
Hum Brain Mapp ; 39(6): 2635-2650, 2018 06.
Article in English | MEDLINE | ID: mdl-29516636

ABSTRACT

Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization.


Subject(s)
Decision Making/physiology , Efferent Pathways/physiology , Goals , Motor Activity/physiology , Psychomotor Performance/physiology , Adult , Corpus Striatum/diagnostic imaging , Efferent Pathways/diagnostic imaging , Female , Frontal Lobe/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Oxygen/blood , Time Factors , Young Adult
19.
Neuroimage ; 164: 214-229, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28286317

ABSTRACT

Recent developments in accelerated imaging methods allow faster acquisition of high spatial resolution images. This could improve the applications of functional magnetic resonance imaging at 7 Tesla (7T-fMRI), such as neurosurgical planning and Brain Computer Interfaces (BCIs). However, increasing the spatial and temporal resolution will both lead to signal-to-noise ratio (SNR) losses due to decreased net magnetization per voxel and T1-relaxation effect, respectively. This could potentially offset the SNR efficiency gains made with increasing temporal resolution. We investigated the effects of varying spatial and temporal resolution on fMRI sensitivity measures and their implications on fMRI-based BCI simulations. We compared temporal signal-to-noise ratio (tSNR), observed percent signal change (%∆S), volumes of significant activation, Z-scores and decoding performance of linear classifiers commonly used in BCIs across a range of spatial and temporal resolution images acquired during an ankle-tapping task. Our results revealed an average increase of 22% in %∆S (p=0.006) and 9% in decoding performance (p=0.015) with temporal resolution only at the highest spatial resolution of 1.5×1.5×1.5mm3, despite a 29% decrease in tSNR (p<0.001) and plateaued Z-scores. Further, the volume of significant activation was indifferent (p>0.05) across spatial resolution specifically at the highest temporal resolution of 500ms. These results demonstrate that the overall BOLD sensitivity can be increased significantly with temporal resolution, granted an adequately high spatial resolution with minimal physiological noise level. This shows the feasibility of diffuse motor-network imaging at high spatial and temporal resolution with robust BOLD sensitivity with 7T-fMRI. Importantly, we show that this sensitivity improvement could be extended to an fMRI application such as BCIs.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Adult , Female , Humans , Male , Young Adult
20.
Nat Biomed Eng ; 2(12): 907-914, 2018 12.
Article in English | MEDLINE | ID: mdl-31015727

ABSTRACT

Direct electrical stimulation of the brain can alleviate symptoms associated with Parkinson's disease, depression, epilepsy and other neurological disorders. However, access to the brain requires invasive procedures, such as the removal of a portion of the skull or the drilling of a burr hole. Also, electrode implantation into tissue can cause inflammatory tissue responses and brain trauma, and lead to device failure. Here, we report the development and application of a chronically implanted platinum electrode array mounted on a nitinol endovascular stent for the localized stimulation of cortical tissue from within a blood vessel. Following percutaneous angiographic implantation of the device in sheep, we observed stimulation-induced responses of the facial muscles and limbs of the animals, similar to those evoked by electrodes implanted via invasive surgery. Proximity of the electrode to the motor cortex, yet not its orientation, was integral to achieving reliable responses from discrete neuronal populations. The minimally invasive endovascular surgical approach offered by the stent-mounted electrode array might enable safe and efficacious stimulation of focal regions in the brain.


Subject(s)
Motor Cortex/physiology , Stents , Angiography , Animals , Electric Stimulation , Electrodes, Implanted , Endovascular Procedures , Extremities/physiology , Facial Muscles/physiology , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...