Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948771

ABSTRACT

The balance of excitation and inhibition is a key functional property of cortical microcircuits which changes through the lifespan. Adolescence is considered a crucial period for the maturation of excitation-inhibition balance. This has been primarily observed in animal studies, yet human in vivo evidence on adolescent maturation of the excitation-inhibition balance at the individual level is limited. Here, we developed an individualized in vivo marker of regional excitation-inhibition balance in human adolescents, estimated using large-scale simulations of biophysical network models fitted to resting-state functional magnetic resonance imaging data from two independent cross-sectional (N = 752) and longitudinal (N = 149) cohorts. We found a widespread relative increase of inhibition in association cortices paralleled by a relative age-related increase of excitation, or lack of change, in sensorimotor areas across both datasets. This developmental pattern co-aligned with multiscale markers of sensorimotor-association differentiation. The spatial pattern of excitation-inhibition development in adolescence was robust to inter-individual variability of structural connectomes and modeling configurations. Notably, we found that alternative simulation-based markers of excitation-inhibition balance show a variable sensitivity to maturational change. Taken together, our study highlights an increase of inhibition during adolescence in association areas using cross sectional and longitudinal data, and provides a robust computational framework to estimate microcircuit maturation in vivo at the individual level.

2.
Nat Commun ; 15(1): 5954, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009591

ABSTRACT

Adolescents exhibit remarkable heterogeneity in the structural architecture of brain development. However, due to limited large-scale longitudinal neuroimaging studies, existing research has largely focused on population averages, and the neurobiological basis underlying individual heterogeneity remains poorly understood. Here we identify, using the IMAGEN adolescent cohort followed up over 9 years (14-23 y), three groups of adolescents characterized by distinct developmental patterns of whole-brain gray matter volume (GMV). Group 1 show continuously decreasing GMV associated with higher neurocognitive performances than the other two groups during adolescence. Group 2 exhibit a slower rate of GMV decrease and lower neurocognitive performances compared with Group 1, which was associated with epigenetic differences and greater environmental burden. Group 3 show increasing GMV and lower baseline neurocognitive performances due to a genetic variation. Using the UK Biobank, we show these differences may be attenuated in mid-to-late adulthood. Our study reveals clusters of adolescent neurodevelopment based on GMV and the potential long-term impact.


Subject(s)
Gray Matter , Magnetic Resonance Imaging , Humans , Gray Matter/diagnostic imaging , Adolescent , Female , Male , Young Adult , Brain/diagnostic imaging , Brain/growth & development , Adult , Longitudinal Studies , Organ Size , Neuroimaging , Cognition/physiology , Longevity , Middle Aged , United Kingdom
3.
medRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38766134

ABSTRACT

Current psychiatric diagnoses are not defined by neurobiological measures which hinders the development of therapies targeting mechanisms underlying mental illness 1,2 . Research confined to diagnostic boundaries yields heterogeneous biological results, whereas transdiagnostic studies often investigate individual symptoms in isolation. There is currently no paradigm available to comprehensively investigate the relationship between different clinical symptoms, individual disorders, and the underlying neurobiological mechanisms. Here, we propose a framework that groups clinical symptoms derived from ICD-10/DSM-V according to shared brain mechanisms defined by brain structure, function, and connectivity. The reassembly of existing ICD-10/DSM-5 symptoms reveal six cross-diagnostic psychopathology scores related to mania symptoms, depressive symptoms, anxiety symptoms, stress symptoms, eating pathology, and fear symptoms. They were consistently associated with multimodal neuroimaging components in the training sample of young adults aged 23, the independent test sample aged 23, participants aged 14 and 19 years, and in psychiatric patients. The identification of symptom groups of mental illness robustly defined by precisely characterized brain mechanisms enables the development of a psychiatric nosology based upon quantifiable neurobiological measures. As the identified symptom groups align well with existing diagnostic categories, our framework is directly applicable to clinical research and patient care.

4.
J Affect Disord ; 359: 140-144, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38754596

ABSTRACT

BACKGROUND: Depressive symptoms are highly prevalent, present in heterogeneous symptom patterns, and share diverse neurobiological underpinnings. Understanding the links between psychopathological symptoms and biological factors is critical in elucidating its etiology and persistence. We aimed to evaluate the utility of using symptom-brain network models to parse the heterogeneity of depressive complaints in a large adolescent sample. METHODS: We used data from the third wave of the IMAGEN study, a multi-center panel cohort study involving 1317 adolescents (52.49 % female, mean ± SD age = 18.5 ± 0.7). Two network models were estimated: one including an overall depressive symptom severity sum score based on the Adolescent Depression Rating Scale (ADRS), and one incorporating individual ADRS item scores. Both networks included measures of cortical thickness in several regions (insula, cingulate, mOFC, fusiform gyrus) and hippocampal volume derived from neuroimaging. RESULTS: The network based on individual item scores revealed associations between cortical thickness measures and specific depressive complaints, obscured when using an aggregate depression severity score. Notably, the insula's cortical thickness showed negative associations with cognitive dysfunction (partial cor. = -0.15); the cingulate's cortical thickness showed negative associations with feelings of worthlessness (partial cor. = -0.10), and mOFC was negatively associated with anhedonia (partial cor. = -0.05). LIMITATIONS: This cross-sectional study relied on the self-reported assessment of depression complaints and used a non-clinical sample with predominantly healthy participants (19 % with depression or sub-threshold depression). CONCLUSIONS: This study showcases the utility of network models in parsing heterogeneity in depressive complaints, linking individual complaints to specific neural substrates. We outline the next steps to integrate neurobiological and cognitive markers to unravel MDD's phenotypic heterogeneity.


Subject(s)
Depression , Magnetic Resonance Imaging , Humans , Female , Male , Adolescent , Depression/physiopathology , Depression/psychology , Brain/diagnostic imaging , Brain/physiopathology , Cohort Studies , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Cerebral Cortex/pathology , Psychiatric Status Rating Scales , Young Adult , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology
5.
J Affect Disord ; 360: 146-155, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38810783

ABSTRACT

BACKGROUND: Personality traits have been associated with eating disorders (EDs) and comorbidities. However, it is unclear which personality profiles are premorbid risk rather than diagnostic markers. METHODS: We explored associations between personality and ED-related mental health symptoms using canonical correlation analyses. We investigated personality risk profiles in a longitudinal sample, associating personality at age 14 with onset of mental health symptoms at ages 16 or 19. Diagnostic markers were identified in a sample of young adults with anorexia nervosa (AN, n = 58) or bulimia nervosa (BN, n = 63) and healthy controls (n = 47). RESULTS: Two significant premorbid risk profiles were identified, successively explaining 7.93 % and 5.60 % of shared variance (Rc2). The first combined neuroticism (canonical loading, rs = 0.68), openness (rs = 0.32), impulsivity (rs = 0.29), and conscientiousness (rs = 0.27), with future onset of anxiety symptoms (rs = 0.87) and dieting (rs = 0.58). The other, combined lower agreeableness (rs = -0.60) and lower anxiety sensitivity (rs = -0.47), with future deliberate self-harm (rs = 0.76) and purging (rs = 0.55). Personality profiles associated with "core psychopathology" in both AN (Rc2 = 80.56 %) and BN diagnoses (Rc2 = 64.38 %) comprised hopelessness (rs = 0.95, 0.87) and neuroticism (rs = 0.93, 0.94). For BN, this profile also included impulsivity (rs = 0.60). Additionally, extraversion (rs = 0.41) was associated with lower depressive risk in BN. LIMITATIONS: The samples were not ethnically diverse. The clinical cohort included only females. There was non-random attrition in the longitudinal sample. CONCLUSIONS: The results suggest neuroticism and impulsivity as risk and diagnostic markers for EDs, with neuroticism and hopelessness as shared diagnostic markers. They may inform the design of more personalised prevention and intervention strategies.


Subject(s)
Anorexia Nervosa , Neuroticism , Personality , Humans , Female , Young Adult , Adolescent , Anorexia Nervosa/psychology , Anorexia Nervosa/epidemiology , Male , Longitudinal Studies , Feeding and Eating Disorders/psychology , Feeding and Eating Disorders/epidemiology , Feeding and Eating Disorders/diagnosis , Bulimia Nervosa/psychology , Bulimia Nervosa/epidemiology , Adult , Impulsive Behavior , Risk Factors , Anxiety/psychology , Anxiety/epidemiology , Anxiety/diagnosis , Comorbidity , Anxiety Disorders/psychology , Anxiety Disorders/epidemiology , Anxiety Disorders/diagnosis
6.
Article in English | MEDLINE | ID: mdl-38663994

ABSTRACT

BACKGROUND: Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS: We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS: Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS: Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.

7.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38617224

ABSTRACT

Substance use, including cigarettes and cannabis, is associated with poorer sustained attention in late adolescence and early adulthood. Previous studies were predominantly cross-sectional or under-powered and could not indicate if impairment in sustained attention was a predictor of substance-use or a marker of the inclination to engage in such behaviour. This study explored the relationship between sustained attention and substance use across a longitudinal span from ages 14 to 23 in over 1,000 participants. Behaviours and brain connectivity associated with diminished sustained attention at age 14 predicted subsequent increases in cannabis and cigarette smoking, establishing sustained attention as a robust biomarker for vulnerability to substance use. Individual differences in network strength relevant to sustained attention were preserved across developmental stages and sustained attention networks generalized to participants in an external dataset. In summary, brain networks of sustained attention are robust, consistent, and able to predict aspects of later substance use.

8.
Psychol Med ; : 1-13, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509831

ABSTRACT

BACKGROUND: Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. METHODS: Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). RESULTS: Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. CONCLUSION: Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.

9.
Psychopharmacology (Berl) ; 241(7): 1447-1461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38532040

ABSTRACT

RATIONALE: For decades, cannabis has been the most widely used illicit substance in the world, particularly among youth. Research suggests that mental health problems associated with cannabis use may result from its effect on reward brain circuit, emotional processes, and cognition. However, findings are mostly derived from correlational studies and inconsistent, particularly in adolescents. OBJECTIVES AND METHODS: Using data from the IMAGEN study, participants (non-users, persistent users, abstinent users) were classified according to their cannabis use at 19 and 22 years-old. All participants were cannabis-naïve at baseline (14 years-old). Psychopathological symptoms, cognitive performance, and brain activity while performing a Monetary Incentive Delay task were used as predictors of substance use and to analyze group differences over time. RESULTS: Higher scores on conduct problems and lower on peer problems at 14 years-old (n = 318) predicted a greater likelihood of transitioning to cannabis use within 5 years. At 19 years of age, individuals who consistently engaged in low-frequency (i.e., light) cannabis use (n = 57) exhibited greater conduct problems and hyperactivity/inattention symptoms compared to non-users (n = 52) but did not differ in emotional symptoms, cognitive functioning, or brain activity during the MID task. At 22 years, those who used cannabis at both 19 and 22 years-old n = 17), but not individuals that had been abstinent for ≥ 1 month (n = 19), reported higher conduct problems than non-users (n = 17). CONCLUSIONS: Impairments in reward-related brain activity and cognitive functioning do not appear to precede or succeed cannabis use (i.e., weekly, or monthly use). Cannabis-naïve adolescents with conduct problems and more socially engaged with their peers may be at a greater risk for lighter yet persistent cannabis use in the future.


Subject(s)
Brain , Cognition , Reward , Humans , Male , Longitudinal Studies , Adolescent , Young Adult , Cognition/drug effects , Cognition/physiology , Female , Brain/drug effects , Mental Health , Marijuana Use/psychology , Marijuana Use/epidemiology , Marijuana Abuse/psychology , Magnetic Resonance Imaging
10.
IBRO Neurosci Rep ; 16: 201-210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38348392

ABSTRACT

Adolescence is a crucial period for physical and psychological development. The impact of negative life events represents a risk factor for the onset of neuropsychiatric disorders. This study aims to investigate the relationship between negative life events and structural brain connectivity, considering both graph theory and connectivity strength. A group (n = 487) of adolescents from the IMAGEN Consortium was divided into Low and High Stress groups. Brain networks were extracted at an individual level, based on morphological similarity between grey matter regions with regions defined using an atlas-based region of interest (ROI) approach. Between-group comparisons were performed with global and local graph theory measures in a range of sparsity levels. The analysis was also performed in a larger sample of adolescents (n = 976) to examine linear correlations between stress level and network measures. Connectivity strength differences were investigated with network-based statistics. Negative life events were not found to be a factor influencing global network measures at any sparsity level. At local network level, between-group differences were found in centrality measures of the left somato-motor network (a decrease of betweenness centrality was seen at sparsity 5%), of the bilateral central visual and the left dorsal attention network (increase of degree at sparsity 10% at sparsity 30% respectively). Network-based statistics analysis showed an increase in connectivity strength in the High stress group in edges connecting the dorsal attention, limbic and salience networks. This study suggests negative life events alone do not alter structural connectivity globally, but they are associated to connectivity properties in areas involved in emotion and attention.

11.
Res Sq ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352452

ABSTRACT

This study uses machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD). Utilizing case-control samples (ages 18-25 years) and a longitudinal population-based sample (n=1,851), the models, incorporating diverse data domains, achieved high accuracy in classifying EDs, MDD, and AUD from healthy controls. The area under the receiver operating characteristic curves (AUC-ROC [95% CI]) reached 0.92 [0.86-0.97] for AN and 0.91 [0.85-0.96] for BN, without relying on body mass index as a predictor. The classification accuracies for MDD (0.91 [0.88-0.94]) and AUD (0.80 [0.74-0.85]) were also high. Each data domain emerged as accurate classifiers individually, with personality distinguishing AN, BN, and their controls with AUC-ROCs ranging from 0.77 to 0.89. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75-0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. For risk prediction in the longitudinal population sample, the models exhibited moderate performance (AUC-ROCs, 0.64-0.71), highlighting the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry.

12.
Nat Hum Behav ; 8(4): 779-793, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38182882

ABSTRACT

Despite its crucial role in the regulation of vital metabolic and neurological functions, the genetic architecture of the hypothalamus remains unknown. Here we conducted multivariate genome-wide association studies (GWAS) using hypothalamic imaging data from 32,956 individuals to uncover the genetic underpinnings of the hypothalamus and its involvement in neuropsychiatric traits. There were 23 significant loci associated with the whole hypothalamus and its subunits, with functional enrichment for genes involved in intracellular trafficking systems and metabolic processes of steroid-related compounds. The hypothalamus exhibited substantial genetic associations with limbic system structures and neuropsychiatric traits including chronotype, risky behaviour, cognition, satiety and sympathetic-parasympathetic activity. The strongest signal in the primary GWAS, the ADAMTS8 locus, was replicated in three independent datasets (N = 1,685-4,321) and was strengthened after meta-analysis. Exome-wide association analyses added evidence to the association for ADAMTS8, and Mendelian randomization showed lower ADAMTS8 expression with larger hypothalamic volumes. The current study advances our understanding of complex structure-function relationships of the hypothalamus and provides insights into the molecular mechanisms that underlie hypothalamic formation.


Subject(s)
Genome-Wide Association Study , Hypothalamus , Humans , Hypothalamus/metabolism , Hypothalamus/diagnostic imaging , Male , Female , Adult , Mental Disorders/genetics , ADAMTS Proteins/genetics , Middle Aged , Mendelian Randomization Analysis
13.
Nat Hum Behav ; 8(1): 164-180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37857874

ABSTRACT

The cerebral ventricles are recognized as windows into brain development and disease, yet their genetic architectures, underlying neural mechanisms and utility in maintaining brain health remain elusive. Here we aggregated genetic and neuroimaging data from 61,974 participants (age range, 9 to 98 years) in five cohorts to elucidate the genetic basis of ventricular morphology and examined their overlap with neuropsychiatric traits. Genome-wide association analysis in a discovery sample of 31,880 individuals identified 62 unique loci and 785 candidate genes associated with ventricular morphology. We replicated over 80% of loci in a well-matched cohort of lateral ventricular volume. Gene set analysis revealed enrichment of ventricular-trait-associated genes in biological processes and disease pathogenesis during both early brain development and degeneration. We explored the age-dependent genetic associations in cohorts of different age groups to investigate the possible roles of ventricular-trait-associated loci in neurodevelopmental and neurodegenerative processes. We describe the genetic overlap between ventricular and neuropsychiatric traits through comprehensive integrative approaches under correlative and causal assumptions. We propose the volume of the inferior lateral ventricles as a heritable endophenotype to predict the risk of Alzheimer's disease, which might be a consequence of prodromal Alzheimer's disease. Our study provides an advance in understanding the genetics of the cerebral ventricles and demonstrates the potential utility of ventricular measurements in tracking brain disorders and maintaining brain health across the lifespan.


Subject(s)
Alzheimer Disease , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Genome-Wide Association Study , Phenotype , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/pathology , Brain/diagnostic imaging , Brain/pathology
14.
medRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045393

ABSTRACT

Background: Depressive symptoms are highly prevalent, present in heterogeneous symptom patterns, and share diverse neurobiological underpinnings. Understanding the links between psychopathological symptoms and biological factors is critical in elucidating its etiology and persistence. We aimed to evaluate the utility of using symptom-brain networks to parse the heterogeneity of depressive symptomatology in a large adolescent sample. Methods: We used data from the third wave of the IMAGEN study, a multi-center panel cohort study involving 1,317 adolescents (52.49% female, mean±SD age=18.5±0.72). Two network models were estimated: one including an overall depressive symptom severity sum score based on the Adolescent Depression Rating Scale (ADRS), and one incorporating individual ADRS symptom/item scores. Both networks included measures of cortical thickness in several regions (insula, cingulate, mOFC, fusiform gyrus) and hippocampal volume derived from neuroimaging. Results: The network based on individual symptom scores revealed associations between cortical thickness measures and specific symptoms, obscured when using an aggregate depression severity score. Notably, the insula's cortical thickness showed negative associations with cognitive dysfunction (partial cor.=-0.15); the cingulate's cortical thickness showed negative associations with feelings of worthlessness (partial cor. = -0.10), and mOFC was negatively associated with anhedonia (partial cor. = -0.05). Limitations: This cross-sectional study included participants who were relatively healthy and relied on the self-reported assessment of depression symptoms. Conclusions: This study showcases the utility of network models in parsing heterogeneity in depressive symptoms, linking individual symptoms to specific neural substrates. We outline the next steps to integrate neurobiological and cognitive markers to unravel MDD's phenotypic heterogeneity.

15.
BJPsych Open ; 9(6): e217, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37981567

ABSTRACT

BACKGROUND: Identifying youths most at risk to COVID-19-related mental illness is essential for the development of effective targeted interventions. AIMS: To compare trajectories of mental health throughout the pandemic in youth with and without prior mental illness and identify those most at risk of COVID-19-related mental illness. METHOD: Data were collected from individuals aged 18-26 years (N = 669) from two existing cohorts: IMAGEN, a population-based cohort; and ESTRA/STRATIFY, clinical cohorts of individuals with pre-existing diagnoses of mental disorders. Repeated COVID-19 surveys and standardised mental health assessments were used to compare trajectories of mental health symptoms from before the pandemic through to the second lockdown. RESULTS: Mental health trajectories differed significantly between cohorts. In the population cohort, depression and eating disorder symptoms increased by 33.9% (95% CI 31.78-36.57) and 15.6% (95% CI 15.39-15.68) during the pandemic, respectively. By contrast, these remained high over time in the clinical cohort. Conversely, trajectories of alcohol misuse were similar in both cohorts, decreasing continuously (a 15.2% decrease) during the pandemic. Pre-pandemic symptom severity predicted the observed mental health trajectories in the population cohort. Surprisingly, being relatively healthy predicted increases in depression and eating disorder symptoms and in body mass index. By contrast, those initially at higher risk for depression or eating disorders reported a lasting decrease. CONCLUSIONS: Healthier young people may be at greater risk of developing depressive or eating disorder symptoms during the COVID-19 pandemic. Targeted mental health interventions considering prior diagnostic risk may be warranted to help young people cope with the challenges of psychosocial stress and reduce the associated healthcare burden.

16.
medRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014064

ABSTRACT

Introduction: Little is understood about the dynamic interplay between brain morphology and cognitive ability across the life course. Additionally, most existing research has focused on global morphology measures such as estimated total intracranial volume, mean thickness, and total surface area. Methods: Mendelian randomization was used to estimate the bidirectional effects between cognitive ability, global and regional measures of cortical thickness and surface area, estimated total intracranial volume, total white matter, and the volume of subcortical structures (N=37,864). Analyses were stratified for developmental periods (childhood, early adulthood, mid-to-late adulthood; age range: 8-81 years). Results: The earliest effects were observed in childhood and early adulthood in the frontoparietal lobes. A bidirectional relationship was identified between higher cognitive ability, larger estimated total intracranial volume (childhood, mid-to-late adulthood) and total surface area (all life stages). A thicker posterior cingulate cortex and a larger surface area in the caudal middle frontal cortex and temporal pole were associated with greater cognitive ability. Contrary, a thicker temporal pole was associated with lower cognitive ability. Discussion: Stable effects of cognitive ability on brain morphology across the life course suggests that childhood is potentially an important window for intervention.

17.
medRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790416

ABSTRACT

Adolescents exhibit remarkable heterogeneity in the structural architecture of brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, existing research has largely focused on population averages and the neurobiological basis underlying individual heterogeneity remains poorly understood. Using structural magnetic resonance imaging from the IMAGEN cohort (n=1,543), we show that adolescents can be clustered into three groups defined by distinct developmental patterns of whole-brain gray matter volume (GMV). Genetic and epigenetic determinants of group clustering and long-term impacts of neurodevelopment in mid-to-late adulthood were investigated using data from the ABCD, IMAGEN and UK Biobank cohorts. Group 1, characterized by continuously decreasing GMV, showed generally the best neurocognitive performances during adolescence. Compared to Group 1, Group 2 exhibited a slower rate of GMV decrease and worsened neurocognitive development, which was associated with epigenetic changes and greater environmental burden. Further, Group 3 showed increasing GMV and delayed neurocognitive development during adolescence due to a genetic variation, while these disadvantages were attenuated in mid-to-late adulthood. In summary, our study revealed novel clusters of adolescent structural neurodevelopment and suggested that genetically-predicted delayed neurodevelopment has limited long-term effects on mental well-being and socio-economic outcomes later in life. Our results could inform future research on policy interventions aimed at reducing the financial and emotional burden of mental illness.

18.
Nat Neurosci ; 26(9): 1603-1612, 2023 09.
Article in English | MEDLINE | ID: mdl-37604888

ABSTRACT

Environmental adversities constitute potent risk factors for psychiatric disorders. Evidence suggests the brain adapts to adversity, possibly in an adversity-type and region-specific manner. However, the long-term effects of adversity on brain structure and the association of individual neurobiological heterogeneity with behavior have yet to be elucidated. Here we estimated normative models of structural brain development based on a lifespan adversity profile in a longitudinal at-risk cohort aged 25 years (n = 169). This revealed widespread morphometric changes in the brain, with partially adversity-specific features. This pattern was replicated at the age of 33 years (n = 114) and in an independent sample at 22 years (n = 115). At the individual level, greater volume contractions relative to the model were predictive of future anxiety. We show a stable neurobiological signature of adversity that persists into adulthood and emphasize the importance of considering individual-level rather than group-level predictions to explain emerging psychopathology.


Subject(s)
Longevity , Mental Disorders , Adult , Humans , Brain , Anxiety , Neurobiology
19.
Nat Commun ; 14(1): 4684, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582920

ABSTRACT

Smoking of cigarettes among young adolescents is a pressing public health issue. However, the neural mechanisms underlying smoking initiation and sustenance during adolescence, especially the potential causal interactions between altered brain development and smoking behaviour, remain elusive. Here, using large longitudinal adolescence imaging genetic cohorts, we identify associations between left ventromedial prefrontal cortex (vmPFC) gray matter volume (GMV) and subsequent self-reported smoking initiation, and between right vmPFC GMV and the maintenance of smoking behaviour. Rule-breaking behaviour mediates the association between smaller left vmPFC GMV and smoking behaviour based on longitudinal cross-lagged analysis and Mendelian randomisation. In contrast, smoking behaviour associated longitudinal covariation of right vmPFC GMV and sensation seeking (especially hedonic experience) highlights a potential reward-based mechanism for sustaining addictive behaviour. Taken together, our findings reveal vmPFC GMV as a possible biomarker for the early stages of nicotine addiction, with implications for its prevention and treatment.


Subject(s)
Gray Matter , Tobacco Use Disorder , Humans , Adolescent , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Prefrontal Cortex/diagnostic imaging , Smoking/adverse effects , Brain
SELECTION OF CITATIONS
SEARCH DETAIL