Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622198

ABSTRACT

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Subject(s)
Iron , Lipocalin-2 , Liver Cirrhosis , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Sterol Regulatory Element Binding Protein 1 , Animals , Humans , Male , Mice , Carbon Tetrachloride/pharmacology , Disease Models, Animal , Gene Expression Regulation , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Iron/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics , Liver Cirrhosis/chemically induced , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
2.
Am J Physiol Cell Physiol ; 326(4): C1248-C1261, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38581663

ABSTRACT

Adipose-derived stem cells (ADSCs) play an important role in the differential capacity for excess energy storage between upper body abdominal (ABD) adipose tissue (AT) and lower body gluteofemoral (GF) AT. We cultured ADSCs from subcutaneous ABD AT and GF AT isolated from eight women with differential body fat distribution and performed single-cell RNA sequencing. Six populations of ADSCs were identified and segregated according to their anatomical origin. The three ADSC subpopulations in GF AT were characterized by strong cholesterol/fatty acid (FA) storage and proliferation signatures. The two ABD subpopulations, differentiated by higher expression of committed preadipocyte marker genes, were set apart by differential expression of extracellular matrix and ribosomal genes. The last population, identified in both depots, was similar to smooth muscle cells and when individually isolated and cultured in vitro they differentiated less than the other subpopulations. This work provides important insight into the use of ADSC as an in vitro model of adipogenesis and suggests that specific subpopulations of GF-ADSCs contribute to the more robust capacity for GF-AT to expand and grow compared with ABD-AT in women.NEW & NOTEWORTHY Identification of distinct subpopulations of adipose-derived stem cells (ADSCs) in upper body abdominal subcutaneous (ABD) and lower body gluteofemoral subcutaneous (GF) adipose tissue depots. In ABD-ADSCs, subpopulations are more committed to adipocyte lineage. GF-ADSC subpopulations are enriched for genes involved in lipids and cholesterol metabolism. Similar depot differences were found in stem cell population identified in freshly isolated stoma vascular fraction. The repertoire of ADSCs subpopulations was different in apple-shaped versus pear-shaped women.


Subject(s)
Adipose Tissue , Subcutaneous Fat , Humans , Female , Adipose Tissue/metabolism , Adipocytes/metabolism , Sequence Analysis, RNA , Cholesterol/metabolism
3.
iScience ; 27(4): 109398, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38544573

ABSTRACT

Mitochondria play a vital role in non-shivering thermogenesis in both brown and subcutaneous white adipose tissues (BAT and scWAT, respectively). However, specific regulatory mechanisms driving mitochondrial function in these tissues have been unclear. Here we demonstrate that prolonged activation of ß-adrenergic signaling induces epigenetic modifications in scWAT, specifically targeting the enhancers for the mitochondria master regulator genes Pgc1a/b. This is mediated at least partially through JMJD1A, a histone demethylase that in response to ß-adrenergic signals, facilitates H3K9 demethylation of the Pgc1a/b enhancers, promoting mitochondrial biogenesis and the formation of beige adipocytes. Disruption of demethylation activity of JMJD1A in mice impairs activation of Pgc1a/b driven mitochondrial biogenesis and limits scWAT beiging, contributing to reduced energy expenditure, obesity, insulin resistance, and metabolic disorders. Notably, JMJD1A demethylase activity is not required for Pgc1a/b dependent thermogenic capacity of BAT especially during acute cold stress, emphasizing the importance of scWAT thermogenesis in overall energy metabolism.

4.
Int J Mol Sci ; 25(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38203607

ABSTRACT

The genome of human adipose-derived stem cells (ADSCs) from abdominal and gluteofemoral adipose tissue depots are maintained in depot-specific stable epigenetic conformations that influence cell-autonomous gene expression patterns and drive unique depot-specific functions. The traditional approach to explore tissue-specific transcriptional regulation has been to correlate differential gene expression to the nearest-neighbor linear-distance regulatory region defined by associated chromatin features including open chromatin status, histone modifications, and DNA methylation. This has provided important information; nonetheless, the approach is limited because of the known organization of eukaryotic chromatin into a topologically constrained three-dimensional network. This network positions distal regulatory elements in spatial proximity with gene promoters which are not predictable based on linear genomic distance. In this work, we capture long-range chromatin interactions using HiChIP to identify remote genomic regions that influence the differential regulation of depot-specific genes in ADSCs isolated from different adipose depots. By integrating these data with RNA-seq results and histone modifications identified by ChIP-seq, we uncovered distal regulatory elements that influence depot-specific gene expression in ADSCs. Interestingly, a subset of the HiChIP-defined chromatin loops also provide previously unknown connections between waist-to-hip ratio GWAS variants with genes that are known to significantly influence ADSC differentiation and adipocyte function.


Subject(s)
Adipocytes , Ascomycota , Humans , Promoter Regions, Genetic , Adipose Tissue , Chromatin/genetics , Stem Cells
5.
Cells ; 13(1)2023 12 30.
Article in English | MEDLINE | ID: mdl-38201289

ABSTRACT

Determining the mechanism driving body fat distribution will provide insights into obesity-related health risks. We used functional genomics tools to profile the epigenomic landscape to help infer the differential transcriptional potential of apple- and pear-shaped women's subcutaneous adipose-derived stem cells (ADSCs). We found that CCCTC-binding factor (CTCF) expression and its chromatin binding were increased in ADSCs from pear donors compared to those from apple donors. Interestingly, the pear enriched CTCF binding sites were located predominantly at the active transcription start sites (TSSs) of genes with active histone marks and YY1 motifs and were also associated with pear enriched RNAPII binding. In contrast, apple enriched CTCF binding sites were mainly found at intergenic regions and when identified at TSS, they were enriched with the bivalent chromatin signatures. Altogether, we provide evidence that CTCF plays an important role in differential regulation of subcutaneous ADSCs gene expression and may influence the development of apple vs. pear body shape.


Subject(s)
Gene Expression Regulation , Transcription Factors , Female , Humans , CCCTC-Binding Factor , Chromatin , Subcutaneous Fat
SELECTION OF CITATIONS
SEARCH DETAIL