Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
J Biochem ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889670

ABSTRACT

Intratumor heterogeneity has been shown to play a role in the malignant progression of cancer. Although clonal evolution in primary cancer has been well studied, that in metastatic tumorigenesis is not fully understood. In this study, we established human colon cancer-derived organoids and investigated clonal dynamics during liver metastasis development by tracking barcode-labelled subclones. Long-term subclone co-cultures showed clonal drift, with a single subclone becoming dominant in the cell population. Interestingly, the selected subclones were not always the same, suggesting that clonal selection was not based on cell intrinsic properties. Furthermore, liver tumors developed by co-transplantation of organoid subclones into the immunodeficient mouse spleen showed a progressive drastic reduction in clonal diversity, and only one or two subclones predominated in the majority of large metastatic tumors. Importantly, selections were not limited to particular subclones but appeared to be random. A trend towards a reduction in clonal diversity was also found in liver metastases of multiple color-labeled organoids of mouse intestinal tumors. Based on these results, we propose a novel mechanism of metastasis development, i.e. a subclone population of the disseminated tumor cells in the liver is selected by neutral selection during colonization and constitutes large metastatic tumors.

2.
Sci Bull (Beijing) ; 69(12): 1909-1919, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38644130

ABSTRACT

Colorectal cancer (CRC), a widespread malignancy, is closely associated with tumor microenvironmental hydrogen peroxide (H2O2) levels. Some clinical trials targeting H2O2 for cancer treatment have revealed its paradoxical role as a promoter of cancer progression. Investigating the dynamics of cancer cell H2O2 eustress at the single-cell level is crucial. In this study, non-contact hopping probe mode scanning ion conductance microscopy (HPICM) with high-sensitive Pt-functionalized nanoelectrodes was employed to measure dynamic extracellular to intracellular H2O2 gradients in individual colorectal cancer Caco-2 cells. We explored the relationship between cellular mechanical properties and H2O2 gradients. Exposure to 0.1 or 1 mmol/L H2O2 eustress increased the extracellular to intracellular H2O2 gradient from 0.3 to 1.91 or 3.04, respectively. Notably, cellular F-actin-dependent stiffness increased at 0.1 mmol/L but decreased at 1 mmol/L H2O2 eustress. This H2O2-induced stiffness modulated AKT activation positively and glutathione peroxidase 2 (GPX2) expression negatively. Our findings unveil the failure of some H2O2-targeted therapies due to their ineffectiveness in generating H2O2, which instead acts eustress to promote cancer cell survival. This research also reveals the complex interplay between physical properties and biochemical signaling in cancer cells' antioxidant defense, illuminating the exploitation of H2O2 eustress for survival at the single-cell level. Inhibiting GPX and/or catalase (CAT) enhances the cytotoxic activity of H2O2 eustress against CRC cells, which holds significant promise for developing innovative therapies targeting cancer and other H2O2-related inflammatory diseases.


Subject(s)
Colorectal Neoplasms , Hydrogen Peroxide , Humans , Hydrogen Peroxide/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Caco-2 Cells , Glutathione Peroxidase/metabolism , Cell Survival/drug effects , Tumor Microenvironment/drug effects , Actins/metabolism , Proto-Oncogene Proteins c-akt/metabolism
3.
EBioMedicine ; 103: 105102, 2024 May.
Article in English | MEDLINE | ID: mdl-38614865

ABSTRACT

BACKGROUND: Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS: We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS: CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION: MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING: Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.


Subject(s)
Colorectal Neoplasms , Single-Cell Analysis , T-Lymphocytes, Regulatory , Tumor Microenvironment , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Microenvironment/immunology , Carcinogenesis/genetics , Carcinogenesis/immunology , Gene Expression Profiling , Transcriptome , Cell Communication/immunology , Immune Tolerance , Gene Expression Regulation, Neoplastic , Male , Female
4.
Diabetol Int ; 15(1): 5-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38264218

ABSTRACT

The Japan Diabetes Society (JDS) and the Japan Cancer Association (JCA) launched a joint committee and published their "First Joint Committee Report on Diabetes and Cancer" in 2013, compiling recommendations for physicians and healthcare providers as well as for the general population. In 2016, the "Second Joint Committee Report on Diabetes and Cancer" summarized the current evidence on glycemic control and cancer risk in patients with diabetes. The current "Third Joint Committee Report on Diabetes and Cancer", for which the joint committee also enlisted the assistance of the Japanese Society of Clinical Oncology (JSCO) and the Japanese Society of Medical Oncology (JSMO), reports on the results from the questionnaire survey, "Diabetes Management in Patients Receiving Cancer Therapy," which targeted oncologists responsible for cancer management and diabetologists in charge of glycemic control in cancer patients. The results of the current survey demonstrated that there is a general consensus among oncologists and diabetologists with regard to the need for guidelines on glycemic control goals, the relevance of glycemic control, and glycemic control during cancer therapy in cancer patients.

5.
Cancer Sci ; 115(2): 672-681, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184804

ABSTRACT

The Japan Diabetes Society and the Japan Cancer Association launched a joint committee and published their "First Joint Committee Report on Diabetes and Cancer" in 2013, compiling recommendations for physicians and health-care providers as well as for the general population. In 2016, the "Second Joint Committee Report on Diabetes and Cancer" summarized the current evidence on glycemic control and cancer risk in patients with diabetes. The current "Third Joint Committee Report on Diabetes and Cancer", for which the joint committee also enlisted the assistance of the Japanese Society of Clinical Oncology and the Japanese Society of Medical Oncology, reports on the results from the questionnaire survey, "Diabetes Management in Patients Receiving Cancer Therapy," which targeted oncologists responsible for cancer management and diabetologists in charge of glycemic control in cancer patients. The results of the current survey indicated that there is a general consensus among oncologists and diabetologists with regard to the need for guidelines on glycemic control goals, the relevance of glycemic control, and glycemic control during cancer therapy in cancer patients.


Subject(s)
Diabetes Mellitus , Neoplasms , Oncologists , Physicians , Humans , Japan/epidemiology , Diabetes Mellitus/epidemiology , Neoplasms/epidemiology , Neoplasms/therapy , Surveys and Questionnaires
6.
Cancer Gene Ther ; 31(4): 527-536, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38177308

ABSTRACT

To identify genes important for colorectal cancer (CRC) development and metastasis, we established a new metastatic mouse organoid model using Sleeping Beauty (SB) transposon mutagenesis. Intestinal organoids derived from mice carrying actively mobilizing SB transposons, an activating KrasG12D, and an inactivating ApcΔ716 allele, were transplanted to immunodeficient mice. While 66.7% of mice developed primary tumors, 7.6% also developed metastatic tumors. Analysis of SB insertion sites in tumors identified numerous candidate cancer genes (CCGs) identified previously in intestinal SB screens performed in vivo, in addition to new CCGs, such as Slit2 and Atxn1. Metastatic tumors from the same mouse were clonally related to each other and to primary tumors, as evidenced by the transposon insertion site. To provide functional validation, we knocked out Slit2, Atxn1, and Cdkn2a in mouse tumor organoids and transplanted to mice. Tumor development was promoted when these gene were knocked out, demonstrating that these are potent tumor suppressors. Cdkn2a knockout cells also metastasized to the liver in 100% of the mice, demonstrating that Cdkn2a loss confers metastatic ability. Our organoid model thus provides a new approach that can be used to understand the evolutionary forces driving CRC metastasis and a rich resource to uncover CCGs promoting CRC.


Subject(s)
DNA Transposable Elements , Neoplasms , Mice , Animals , DNA Transposable Elements/genetics , Neoplasms/genetics , Mutagenesis , Liver , Organoids
7.
Pathol Int ; 74(4): 187-196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38289139

ABSTRACT

Nephrogenic adenoma (NA) is an epithelial lesion that usually occurs in the mucosa of the urinary tract. Rare cases of deep infiltrative or perinephric lesions have also been reported. Recently, NA with characteristic fibromyxoid stroma (fibromyxoid NA) has been proposed as a distinct variant. Although shedding of distal renal tubular cells due to urinary tract rupture has been postulated as the cause of NA in general, the mechanism underlying extraurinary presentation of NA and fibromyxoid stromal change in fibromyxoid NA remains unknown. In this study, we performed mass spectrometry (MS) analysis in a case of perinephric fibromyxoid NA of an 82-year-old man who underwent right nephroureterectomy for distal ureteral cancer. The patient had no prior history of urinary tract injury or radiation. Periodic acid-Schiff staining-positive eosinophilic structureless deposits in the stroma of fibromyxoid NA were microdissected and subjected to liquid chromatography/MS. The analysis revealed the presence of a substantial amount of uromodulin (Tamm-Horsfall protein). The presence of urinary content in the stroma of perinephric fibromyxoid NA suggests that urinary tract rupture and engraftment of renal tubular epithelial cells directly cause the lesion.


Subject(s)
Adenoma , Male , Humans , Aged, 80 and over , Uromodulin , Adenoma/pathology , Mass Spectrometry
8.
Cancer Res ; 84(1): 56-68, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37851521

ABSTRACT

Signaling by TGFß family cytokines plays a tumor-suppressive role by inducing cell differentiation, while it promotes malignant progression through epithelial-to-mesenchymal transition (EMT). Identification of the mechanisms regulating the switch from tumor suppression to tumor promotion could identify strategies for cancer prevention and treatment. To identify the key genetic alterations that determine the outcome of TGFß signaling, we used mouse intestinal tumor-derived organoids carrying multiple driver mutations in various combinations to examine the relationship between genotypes and responses to the TGFß family cytokine activin A. KrasG12D mutation protected organoid cells from activin A-induced growth suppression by inhibiting p21 and p27 expression. Furthermore, Trp53R270H gain-of-function (GOF) mutation together with loss of wild-type Trp53 by loss of heterozygosity (LOH) promoted activin A-induced partial EMT with formation of multiple protrusions on the organoid surface, which was associated with increased metastatic incidence. Histologic analysis confirmed that tumor cells at the protrusions showed loss of apical-basal polarity and glandular structure. RNA sequencing analysis indicated that expression of Hmga2, encoding a cofactor of the SMAD complex that induces EMT transcription factors, was significantly upregulated in organoids with Trp53 GOF/LOH alterations. Importantly, loss of HMGA2 suppressed expression of Twist1 and blocked activin A-induced partial EMT and metastasis in Trp53 GOF/LOH organoids. These results indicate that TP53 GOF/LOH is a key genetic state that primes for TGFß family-induced partial EMT and malignant progression of colorectal cancer. Activin signaling may be an effective therapeutic target for colorectal cancer harboring TP53 GOF mutations. SIGNIFICANCE: KRAS and TP53 mutations shift activin-mediated signaling to overcome growth inhibition and promote partial EMT, identifying a subset of patients with colorectal cancer that could benefit from inhibition of TGFß signaling.


Subject(s)
Colorectal Neoplasms , Transforming Growth Factor beta , Animals , Humans , Mice , Activins , Cell Line, Tumor , Colorectal Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Gain of Function Mutation , Mutation , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/genetics
9.
Cancer Cell ; 41(11): 1892-1910.e10, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37863068

ABSTRACT

Liver metastases are associated with poor response to current pharmacological treatments, including immunotherapy. We describe a lentiviral vector (LV) platform to selectively engineer liver macrophages, including Kupffer cells and tumor-associated macrophages (TAMs), to deliver type I interferon (IFNα) to liver metastases. Gene-based IFNα delivery delays the growth of colorectal and pancreatic ductal adenocarcinoma liver metastases in mice. Response to IFNα is associated with TAM immune activation, enhanced MHC-II-restricted antigen presentation and reduced exhaustion of CD8+ T cells. Conversely, increased IL-10 signaling, expansion of Eomes CD4+ T cells, a cell type displaying features of type I regulatory T (Tr1) cells, and CTLA-4 expression are associated with resistance to therapy. Targeting regulatory T cell functions by combinatorial CTLA-4 immune checkpoint blockade and IFNα LV delivery expands tumor-reactive T cells, attaining complete response in most mice. These findings support a promising therapeutic strategy with feasible translation to patients with unmet medical need.


Subject(s)
CD8-Positive T-Lymphocytes , Liver Neoplasms , Humans , Mice , Animals , CTLA-4 Antigen/metabolism , Tumor Microenvironment/genetics , Macrophages , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/pathology
10.
Br J Cancer ; 129(7): 1105-1118, 2023 10.
Article in English | MEDLINE | ID: mdl-37596408

ABSTRACT

BACKGROUND: Intratumor heterogeneity (ITH) in microsatellite instability-high (MSI-H) colorectal cancer (CRC) has been poorly studied. We aimed to clarify how the ITH of MSI-H CRCs is generated in cancer evolution and how immune selective pressure affects ITH. METHODS: We reanalyzed public whole-exome sequencing data on 246 MSI-H CRCs. In addition, we performed a multi-region analysis from 6 MSI-H CRCs. To verify the process of subclonal immune escape accumulation, a novel computational model of cancer evolution under immune pressure was developed. RESULTS: Our analysis presented the enrichment of functional genomic alterations in antigen-presentation machinery (APM). Associative analysis of neoantigens indicated the generation of immune escape mechanisms via HLA alterations. Multiregion analysis revealed the clonal acquisition of driver mutations and subclonal accumulation of APM defects in MSI-H CRCs. Examination of variant allele frequencies demonstrated that subclonal mutations tend to be subjected to selective sweep. Computational simulations of tumour progression with the interaction of immune cells successfully verified the subclonal accumulation of immune escape mutations and suggested the efficacy of early initiation of an immune checkpoint inhibitor (ICI) -based treatment. CONCLUSIONS: Our results demonstrate the heterogeneous acquisition of immune escape mechanisms in MSI-H CRCs by Darwinian selection, providing novel insights into ICI-based treatment strategies.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Microsatellite Instability , Colorectal Neoplasms/pathology , Colonic Neoplasms/genetics , Mutation , Antigen Presentation , Microsatellite Repeats/genetics
11.
Cancer Sci ; 114(9): 3478-3486, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37357016

ABSTRACT

The stepwise accumulation of key driver mutations is responsible for the development and malignant progression of colorectal cancer in primary sites. Genetic mouse model studies have revealed combinations of driver gene mutations that induce phenotypic changes in tumors toward malignancy. However, cancer evolution is regulated by not only genetic alterations but also nongenetic mechanisms. For example, certain populations of metastatic cancer cells show a loss of malignant characteristics even after the accumulation of driver mutations, and such cells are eliminated in a negative selection manner. Furthermore, a polyclonal metastasis model has recently been proposed, in which cell clusters consisting of genetically heterogeneous cells break off from the primary site, disseminate to distant organs, and develop into heterogenous metastatic tumors. Such nongenetic mechanisms for malignant progression have been elucidated using genetically engineered mouse models as well as organoid transplantation experiments. In this review article, we discuss the role of genetic alterations in the malignant progression of primary intestinal tumors and nongenetic mechanisms for negative selection and polyclonal metastasis, which we learned from model studies.


Subject(s)
Colorectal Neoplasms , Animals , Mice , Mutation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology
12.
Methods Mol Biol ; 2691: 19-30, 2023.
Article in English | MEDLINE | ID: mdl-37355534

ABSTRACT

It has been established that the accumulation of driver gene mutations causes malignant progression of colorectal cancer (CRC) through positive selection and clonal expansion, similar to Darwin's evolution. Following this multistep tumorigenesis concept, we previously showed the specific mutation patterns for each process of malignant progression, including submucosal invasion, epithelial mesenchymal transition (EMT), intravasation, and metastasis, using genetically engineered mouse and organoid models. However, we also found that certain populations of cancer-derived organoid cells lost malignant characteristics of metastatic ability, although driver mutations were not impaired, and such subpopulations were eliminated from the tumor tissues by negative selection. These organoid model studies have contributed to our understanding of the cancer evolution mechanism. We herein report the in vitro and in vivo experimental protocols to investigate the survival, growth, and metastatic ability of intestinal tumor-derived organoids. The model system will be useful for basic research as well as the development of clinical strategies.


Subject(s)
Colorectal Neoplasms , Intestinal Neoplasms , Mice , Animals , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Intestines/pathology , Models, Biological , Genotype , Organoids/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology
13.
Sci Rep ; 13(1): 1366, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693917

ABSTRACT

The detection and sequencing of the mutated ctDNA is one of the irreplaceable clinical measures in the postoperative management of colorectal cancer (CRC) cases. However, we are curious to comprehend the essential traits of mutated genes comprising metastatic sites out of whole mutated genes in primary sites. In the current retrospective study, we conducted target resequencing of ctDNA using 47 plasma samples and established a cancer panel carrying the commonly mutated genes between primary and recurrent tumors. We found that mutated genes in ctDNA indicated immune-resistance traits with respect to the impaired ability to present neoantigens by loss of expression or binding affinity to HLA in the primary tumor. Compared with the estimated neoantigens from all mutated genes in primary tumors, the neoantigen peptides from commonly mutated genes on the panel showed abundant expression but no binding affinity to HLA. Therefore, ctDNA mutations can be frequently and postoperatively detected to identify recurrence; however, these mutated genes were derived from immune-tolerated clones owing to the loss of neoantigen presentation in primary CRC tumors.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/surgery , Colorectal Neoplasms/pathology , Retrospective Studies , Neoplasm Recurrence, Local/genetics , Mutation , Antigens, Neoplasm/genetics
14.
Cell Rep ; 42(1): 111929, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36656712

ABSTRACT

The cellular interactions in the tumor microenvironment of colorectal cancer (CRC) are poorly understood, hindering patient treatment. In the current study, we investigate whether events occurring at the invasion front are of particular importance for CRC treatment strategies. To this end, we analyze CRC tissues by combining spatial transcriptomics from patients with a public single-cell transcriptomic atlas to determine cell-cell interactions at the invasion front. We show that CRC cells are localized specifically at the invasion front. These cells induce human leukocyte antigen G (HLA-G) to produce secreted phosphoprotein 1 (SPP1)+ macrophages while conferring CRC cells with anti-tumor immunity, as well as proliferative and invasive properties. Taken together, these findings highlight the signaling between CRC cell populations and stromal cell populations at the cellular level.


Subject(s)
Colorectal Neoplasms , HLA-G Antigens , Humans , HLA-G Antigens/genetics , Osteopontin , Transcriptome/genetics , Colorectal Neoplasms/pathology , Macrophages , Tumor Microenvironment
15.
Cancer Sci ; 114(4): 1437-1450, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36576236

ABSTRACT

Cancer evolution is explained by the accumulation of driver mutations and subsequent positive selection by acquired growth advantages, like Darwin's evolution theory. However, whether the negative selection of cells that have lost malignant properties contributes to cancer progression has not yet been fully investigated. Using intestinal metastatic tumor-derived organoids carrying Apc, Kras, Tgfbr2, and Trp53 quadruple mutations, we demonstrate here that approximately 30% of subclones of the organoids show loss of metastatic ability to the liver while keeping the driver mutations and oncogenic pathways. Notably, highly metastatic subclones also showed a gradual loss of metastatic ability during further passages. Such non-metastatic subclones revealed significantly decreased survival and proliferation ability in Matrigel and collagen gel culture conditions, which may cause elimination from the tumor tissues in vivo. RNA sequencing indicated that stemness-related genes, including Lgr5 and Myb, were significantly downregulated in non-metastatic subclones as well as subclones that lost metastatic ability during additional passages. Furthermore, a CGH analysis showed that non-metastatic subclones were derived from a minor population of parental organoid cells. These results indicate that metastatic ability is continuously lost with decreased stem cell property in certain subpopulations of malignant tumors, and such subpopulations are eliminated by negative selection. Therefore, it is possible that cancer evolution is regulated not only by positive selection but also by negative selection. The mechanism underlying the loss of metastatic ability will be important for the future development of therapeutic strategies against metastasis.


Subject(s)
Intestinal Neoplasms , Humans , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Intestines/pathology , Mutation , Genes, ras , Organoids/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
16.
Genes Cells ; 28(1): 42-52, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36453187

ABSTRACT

Bisphenol F diglycidyl ether (BFDGE) is widely used in the synthesis process of plastic products. While exposure to bisphenol A diglycidyl ether (BADGE), which has a similar structure to BFDGE and which is used for the same purpose, has been reported to cause health risks, there is still little information on BFDGE. Because it is estimated that the industrial workers are exposed to large amounts of BFDGE, the health risks associated with BFDGE exposure need to be clarified. We investigated the toxicity of cutaneous exposure to BFDGE using an in vitro evaluation system and a mouse exposure model. The tumorigenic potential of BFDGE was confirmed by the Bhas 42 cell transformation assay, which showed that BFDGE has both promoter and initiator activity, in vitro. A single dermal application of BFDGE was associated with minor contact hypersensitivity symptoms. In contrast, repeated dermal exposure to BFDGE for 2 weeks induced persistent acute inflammation with features similar to inflammation in human psoriasis. This is the first report evaluating the toxicity of BFDGE in animals, and we showed that BFDGE carries a health risk of inducing skin dermatitis similar to that in human psoriasis in an exposure period-dependent manner.


Subject(s)
Dermatitis , Psoriasis , Humans , Animals , Mice , Epoxy Compounds/toxicity , Dermatitis/etiology , Inflammation/chemically induced , Psoriasis/chemically induced
17.
Small ; 19(9): e2206213, 2023 03.
Article in English | MEDLINE | ID: mdl-36504356

ABSTRACT

Studying mechanobiology is increasing of scientific interests in life science and nanotechnology since its impact on cell activities (e.g., adhesion, migration), physiology, and pathology. The role of apical surface (AS) and basal surface (BS) of cells played in mechanobiology is significant. The mechanical mapping and analysis of cells mainly focus on AS while little is known about BS. Here, high-speed scanning ion conductance microscope as a powerful tool is utilized to simultaneously reveal morphologies and local elastic modulus (E) of BS of genotype-defined metastatic intestinal organoids. A simple method is developed to prepare organoid samples allowing for long-term BS imaging. The multiple nano/microstructures, i.e., ridge-like, stress-fiber, and E distributions on BS are dynamically revealed. The statistic E analysis shows softness of BS derived from eight types of organoids following a ranking: malignant tumor cells > benign tumor cells > normal cells. Moreover, the correlation factor between morphology and E is demonstrated depending on cell types. This work as first example reveals the subcellular morphologies and E distributions of BS of cells. The results would provide a clue for correlating genotype of 3D cells to malignant phenotype reflected by E and offering a promising strategy for early-stage diagnosis of cancer.


Subject(s)
Microscopy , Neoplasms , Humans , Intestines , Organoids , Nanotechnology , Neoplasms/pathology
18.
Commun Biol ; 5(1): 1420, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36577784

ABSTRACT

Cellular senescence caused by oncogenic stimuli is associated with the development of various age-related pathologies through the senescence-associated secretory phenotype (SASP). SASP is mediated by the activation of cytoplasmic nucleic acid sensors. However, the molecular mechanism underlying the accumulation of nucleotide ligands in senescent cells is unclear. In this study, we revealed that the expression of RNaseH2A, which removes ribonucleoside monophosphates (rNMPs) from the genome, is regulated by E2F transcription factors, and it decreases during cellular senescence. Residual rNMPs cause genomic DNA fragmentation and aberrant activation of cytoplasmic nucleic acid sensors, thereby provoking subsequent SASP factor gene expression in senescent cells. In addition, RNaseH2A expression was significantly decreased in aged mouse tissues and cells from individuals with Werner syndrome. Furthermore, RNaseH2A degradation using the auxin-inducible degron system induced the accumulation of nucleotide ligands and induction of certain tumourigenic SASP-like factors, promoting the metastatic properties of colorectal cancer cells. Our results indicate that RNaseH2A downregulation provokes SASP through nucleotide ligand accumulation, which likely contributes to the pathological features of senescent, progeroid, and cancer cells.


Subject(s)
DNA , Neoplasms , Animals , Mice , Cellular Senescence/genetics , DNA Fragmentation , Down-Regulation , Gene Expression , Genomics , Ligands , Neoplasms/genetics , Neoplasms/metabolism , Nucleotides , Phenotype , Humans , Cell Line
19.
Cell Mol Gastroenterol Hepatol ; 14(3): 567-586, 2022.
Article in English | MEDLINE | ID: mdl-35716851

ABSTRACT

BACKGROUND & AIMS: Gastric cancer (GC) is strongly linked with chronic gastritis after Helicobacter pylori infection. Toll-like receptors (TLRs) are key innate immune pathogenic sensors that mediate chronic inflammatory and oncogenic responses. Here, we investigated the role of TLR9 in the pathogenesis of GC, including Helicobacter infection. METHODS: TLR9 gene expression was profiled in gastric tissues from GC and gastritis patients and from the spontaneous gp130F/F GC mouse model and chronic H felis-infected wild-type (WT) mice. Gastric pathology was compared in gp130F/F and H felis infection models with or without genetic ablation of Tlr9. The impact of Tlr9 targeting on signaling cascades implicated in inflammation and tumorigenesis (eg, nuclear factor kappa B, extracellular signal-related kinase, and mitogen-activated protein kinase) was assessed in vivo. A direct growth-potentiating effect of TLR9 ligand stimulation on human GC cell lines and gp130F/F primary gastric epithelial cells was also evaluated. RESULTS: TLR9 expression was up-regulated in Helicobacter-infected gastric tissues from GC and gastritis patients and gp130F/F and H felis-infected WT mice. Tlr9 ablation suppressed initiation of tumorigenesis in gp130F/F:Tlr9-/- mice by abrogating gastric inflammation and cellular proliferation. Tlr9-/- mice were also protected against H felis-induced gastric inflammation and hyperplasia. The suppressed gastric pathology upon Tlr9 ablation in both mouse models associated with attenuated nuclear factor kappa B and, to a lesser extent, extracellular signal-related kinase, mitogen-activated protein kinase signaling. TLR9 ligand stimulation of human GC cells and gp130F/F GECs augmented their proliferation and viability. CONCLUSIONS: Our data reveal that TLR9 promotes the initiating stages of GC and facilitates Helicobacter-induced gastric inflammation and hyperplasia, thus providing in vivo evidence for TLR9 as a candidate therapeutic target in GC.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Animals , Carcinogenesis/pathology , Cell Proliferation , Cytokine Receptor gp130/metabolism , Gastric Mucosa/pathology , Gastritis/pathology , Helicobacter Infections/metabolism , Helicobacter pylori/metabolism , Humans , Hyperplasia/pathology , Inflammation/pathology , Ligands , Mice , NF-kappa B/metabolism , Stomach Neoplasms/pathology , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
20.
Commun Biol ; 5(1): 487, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595960

ABSTRACT

Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale.


Subject(s)
Artifacts , Membrane Proteins , Cell Membrane , Fixatives , Microscopy, Atomic Force
SELECTION OF CITATIONS
SEARCH DETAIL
...