Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 35(3): 109018, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882313

ABSTRACT

Physical exercise has profound effects on quality of life and susceptibility to chronic disease; however, the regulation of skeletal muscle function at the molecular level after exercise remains unclear. We tested the hypothesis that the benefits of exercise on muscle function are linked partly to microtraumatic events that result in accumulation of circulating heme. Effective metabolism of heme is controlled by Heme Oxygenase-1 (HO-1, Hmox1), and we find that mouse skeletal muscle-specific HO-1 deletion (Tam-Cre-HSA-Hmox1fl/fl) shifts the proportion of muscle fibers from type IIA to type IIB concomitant with a disruption in mitochondrial content and function. In addition to a significant impairment in running performance and response to exercise training, Tam-Cre-HSA-Hmox1fl/fl mice show remarkable muscle atrophy compared to Hmox1fl/fl controls. Collectively, these data define a role for heme and HO-1 as central regulators in the physiologic response of skeletal muscle to exercise.


Subject(s)
Heme Oxygenase-1/genetics , Heme/metabolism , Membrane Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/genetics , Physical Conditioning, Animal/physiology , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , Animals , Ferrochelatase/genetics , Ferrochelatase/metabolism , Gene Expression Regulation , Heme Oxygenase-1/deficiency , Isoenzymes/genetics , Isoenzymes/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/physiopathology , MyoD Protein/genetics , MyoD Protein/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Signal Transduction , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL