Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38865038

ABSTRACT

The French National Metrology Institute (LNE) initiated a series of events to identify priorities for test methods and their harmonisation that directly address regulatory needs in Nanomedicine. One of these workshops entitled "The International Standardisation Roadmap for Nanomedicine" held in October 2023 (Paris, France) brought together key experts in the characterisation of nanomedicines and medical products containing nanomaterials, including the Joint Research Centre of the European Commission, SINTEF Industry and the metrology institutes of France, the UK, the USA and Canada, two flagship initiatives of the European Commission (PHOENIX and SAFE-n-MEDTECH Open Innovation Test Beds), representatives of a working party on mRNA vaccines at the European Directorate for the Quality of Medicines (EDQM) and members of international standardisation and pre-normative organisations (including CEN, ISO, ASTM, VAMAS). Two take-home message came out from the discussion. First, developing standard test methods and Reference Materials (RMs) for nanomedicines is a key priority for the European Commission and various stakeholders. Furthermore, there was a unanimous recognition of the need for a unified approach between standardisation committees, regulators and the nanomedicine community. At the USA, Canadian and European level, examples of success stories and of future initiative have been discussed. Future perspectives include the creation of a dedicated Working Group under CEN/TC 352 to consolidate efforts and develop a nanomedicine standardisation roadmap.

2.
J Aerosol Sci ; 160: 105914, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36530797

ABSTRACT

The tension on the supply of surgical and FFP2 masks during the first wave of the COVID-19 pandemic leads to study the potential reuse of these masks. As washing is easily adaptable at home, this treatment solution was retained. In this work, thirty-six references of surgical masks and four FFP2 masks were tested without being worn or washed and after several washing cycles. The results highlighted a great heterogeneity of performances depending on the mask trademarks, both for surgical masks and FFP2. The quality of the meltblown and spunbond layers and the presence/absence of electrostatic charges at the fiber surface are put forward to explain the variability of results, both on differential pressures and filtration efficiencies. The differential pressure and the particle filtration efficiency of the washed masks were maintained up to 10 washing cycles and met the standard requirements. However, an immersion in water with a detergent induces an efficiency decrease for submicronic particles. This lower performance, constant after the first washing cycle, can be explained by the loss of electrostatic charges during the washing cycle. The modifications of surface properties after washing also lead to a loss of the hydrophobic behavior of type IIR surgical masks, which can therefore no more be considered as resistant to blood projections.

3.
Toxics ; 11(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36668747

ABSTRACT

Gasoline emissions contain high levels of pollutants, including particulate matter (PM), which are associated with several health outcomes. Moreover, due to the depletion of fossil fuels, biofuels represent an attractive alternative, particularly second-generation biofuels (B2G) derived from lignocellulosic biomass. Unfortunately, compared to the abundant literature on diesel and gasoline emissions, relatively few studies are devoted to alternative fuels and their health effects. This study aimed to compare the adverse effects of gasoline and B2G emissions on human bronchial epithelial cells. We characterized the emissions generated by propane combustion (CAST1), gasoline Surrogate, and B2G consisting of Surrogate blended with anisole (10%) (S+10A) or ethanol (10%) (S+10E). To study the cellular effects, BEAS-2B cells were cultured at air-liquid interface for seven days and exposed to different emissions. Cell viability, oxidative stress, inflammation, and xenobiotic metabolism were measured. mRNA expression analysis was significantly modified by the Surrogate S+10A and S+10E emissions, especially CYP1A1 and CYP1B1. Inflammation markers, IL-6 and IL-8, were mainly downregulated doubtless due to the PAHs content on PM. Overall, these results demonstrated that ultrafine particles generated from biofuels Surrogates had a toxic effect at least similar to that observed with a gasoline substitute (Surrogate), involving probably different toxicity pathways.

4.
J Hazard Mater ; 403: 123916, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33264968

ABSTRACT

Soot samples from different fuels were produced in small and pilot combustion test benches at various O2 concentrations, and were then characterized in terms of primary particle diameter, specific surface area and oxygen content/speciation. Water sorption measurements were then carried out for soot compacted into pellet form and in powder form, using both a gravimetric microbalance and a manometric analyser. Water adsorption isotherms are all found to be Type V, and reveal the central role of the specific surface area and the oxygen content of soot. A single parametrization of the second Dubinin-Serpinsky model gives a proper fit for all isotherms. To the best of our knowledge, this is the first study to provide physico-chemical parameters and water sorption results for fire soot. This enables a better description of the soot cake formed on filters during a fire, in particular in industrial confined facilities as simulated in this study. Humidity can be then explicitly considered in the same way as other parameters influencing the aeraulic resistance of soot cakes. These results can be used to improve predictions of the consequences of fires on the containment of toxic materials within industrial facilities.

5.
ACS Omega ; 4(7): 12896-12904, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460416

ABSTRACT

Modeling of plutonium(IV) behavior during an accidental fire in a reprocessing plant was considered using various non-radioactive metallic surrogates. Among those elements, cerium(IV) was supposed to be a suitable candidate due to possible formation of a complex with TPB, but its extractability and stability have not been studied previously under representative plutonium uranium reduction extraction (PUREX) conditions. In this work, we investigated the chemical analogy between cerium(IV) and plutonium(IV) in this extractive process and combustion thereof. Distribution ratios are reported for acidities of 1-4 mol L-1 in equal volumes of nitric acid and a 30:70 mixture of tributylphosphate and hydrogenated tetrapropylene. The influences of light, temperature, and extraction time were studied by UV-vis spectroscopy. The results showed that cerium(IV) is extracted quantitatively but is reduced over time to cerium(III) in the organic mixture. Spectrophotometric investigations of this reaction kinetics revealed an apparent rate constant k of 0.021 ± 0.002 mol0.5 L0.5 min-1 at 298 K and an apparent fractional reaction order of 0.5. The activation energy of this reduction was found to be around 82 ± 2 kJ mol-1 by the Arrhenius plot method. The combustion of mono- and biphasic solutions prepared with a cerium(IV) concentration of 10 g L-1 revealed that the extracted complexes, Ce2O·6NO3·3TBP(org) or Ce4O4·8NO3·6TBP(org), are reduced during the combustion. Compositions of the resulting ashes and soot were analyzed and highlighted the presence of pyrophosphates and polycyclic aromatic hydrocarbons, with some traces of cerium. Ce(IV) is not suitable to represent Pu(IV) from a chemical point of view in HNO3/TBP-HTP solutions.

6.
Phys Rev Lett ; 115(24): 246101, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26705641

ABSTRACT

Nanoparticles formed within an ablation plume produced by the impact of a nanosecond laser pulse on the surface of an aluminum target have been directly measured using small-angle x-ray scattering. The target was immersed in an oxygen-nitrogen gas mixture at atmospheric pressure with the O_{2}/N_{2} ratio being precisely controlled. The results for an increasing oxygen content reveal remarkable effects on the morphology of the generated particles, which include a decrease in the particle volume but a marked increase in its surface ruggedness. Molecular dynamics simulations using a reactive potential and performed under similar conditions as the experiment reproduce the experimental trends and show in detail how the shape and surface structure of the nanoparticles evolve with increasing oxygen content. This good agreement between in situ observations in the plume and atomistic simulations emphasizes the key role of chemical reactivity together with thermodynamic conditions on the morphology of the particles thus produced.

7.
Sci Rep ; 5: 15088, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26462615

ABSTRACT

We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs' surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...