Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters











Publication year range
1.
Molecules ; 29(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39275039

ABSTRACT

Understanding the thermal aging kinetics of animal oils is of vital importance in the storage and applications of animal oils. In this work, we use four different techniques, including UV-Vis spectrometry, viscometry, impedance spectroscopy, and acid-base titration, to study the thermal aging kinetics of tallow, chicken oil, lard, and sheep oil in the temperature range from 120 °C to 180 °C. The evolutions of the UV-Vis absorbance, dynamic viscosity, electric impedance, and acid titration are discussed with the defect kinetics. The evolutions of the color centers, defects for dynamic viscosity, and electric dipoles follow second-order, first-order, and zero-order kinetics, respectively. The temperature dependence of rate constants for the evolutions of the UV-Vis absorbance, dynamic viscosity, electric impedance, and acid titration satisfies the Arrhenius equation with the same activation energy for individual animal oils. The activation energies are ~43.1, ~23.8, ~39.1, and ~37.5 kJ/mol for tallow, chicken oil, lard, and sheep oil, respectively. The thermal aging kinetics of the animal oils are attributed to the oxidation of triglycerides.

2.
Discov Oncol ; 15(1): 406, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231877

ABSTRACT

The early diagnosis of liver cancer is crucial for the treatment and depends on the coordinated use of several test procedures. Early diagnosis is crucial for precision therapy in the treatment of the hepatocellular carcinoma (HCC). Therefore, in this study, the NK cell-related gene prediction model was used to provide the basis for precision therapy at the gene level and a novel basis for the treatment of patients with liver cancer. Natural killer (NK) cells have innate abilities to recognize and destroy tumor cells and thus play a crucial function as the "innate counterpart" of cytotoxic T cells. The natural killer (NK) cells is well recognized as a prospective approach for tumor immunotherapy in treating patients with HCC. In this research, we used publicly available databases to collect bioinformatics data of scRNA-seq and RNA-seq from HCC patients. To determine the NK cell-related genes (NKRGs)-based risk profile for HCC, we isolated T and natural killer (NK) cells and subjected them to analysis. Uniform Manifold Approximation and Projection plots were created to show the degree of expression of each marker gene and the distribution of distinct clusters. The connection between the immunotherapy response and the NKRGs-based signature was further analyzed, and the NKRGs-based signature was established. Eventually, a nomogram was developed using the model and clinical features to precisely predict the likelihood of survival. The prognosis of HCC can be accurately predicted using the NKRGs-based prognostic signature, and thorough characterization of the NKRGs signature of HCC may help to interpret the response of HCC to immunotherapy and propose a novel tumor treatment perspective.

3.
Phys Rev Lett ; 133(11): 111602, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39331965

ABSTRACT

We develop a generic geometric formalism that incorporates both TT[over ¯]-like and root-TT[over ¯]-like deformations in arbitrary dimensions. This framework applies to a wide family of stress-energy tensor perturbations and encompasses various well-known field theories. Building upon the recently proposed correspondence between Ricci-based gravity and TT[over ¯]-like deformations, we further extend this duality to include root-TT[over ¯]-like perturbations. This refinement extends the potential applications of our approach and contributes to a deeper exploration of the interplay between stress tensor perturbations and gravitational dynamics. Among the various original outcomes detailed in this Letter, we have also obtained a deformation of the flat Jackiw-Teitelboim gravity action.

4.
Front Med (Lausanne) ; 11: 1376217, 2024.
Article in English | MEDLINE | ID: mdl-39346937

ABSTRACT

Cirrhotic ascites refers to the accumulation of fluid in the peritoneal cavity due to severe liver disease and impaired liver function, which leads to poor blood circulation in the body, increased pressure in the hepatic sinus wall, and the exudation of fluid from the plasma into the peritoneal cavity. Cirrhotic ascites is a common complication of cirrhosis and poses a threat to the health and lives of modern people, causing a heavy social burden worldwide. So far, there are no effective treatment methods available to improve the quality and quantity of life for patients and their partners; existing drugs can only alleviate the symptoms of cirrhotic ascites and slow down its progression. This article aims to carefully examine the pathogenesis of cirrhotic ascites by exploring various contributing factors such as portal hypertension, renal dysfunction, inflammation, growth factors, oxidative stress, immunocytes, and gut microbiota. The purpose is to gain better insights and deeper understanding of the mechanisms involved in this condition.

5.
Free Radic Biol Med ; 224: 352-365, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39209138

ABSTRACT

Metabolic-associated steatotic liver disease (MASLD), known as non-alcoholic fatty liver disease (NAFLD) in the past, encompasses a range of liver pathological conditions marked by the excessive lipid accumulation. Consumption of coffee is closely associated with the reduced risk of MASLD. Caffeic acid (CA), a key active ingredient in coffee, exhibits notable hepatoprotective properties. This study aims to investigate the improvement of CA on MASLD and the engaged mechanism. Mice underwent a 12-week high-fat diet (HFD) regimen to induce MASLD, and liver pathology was assessed using hematoxylin-eosin (H&E) and oil red O (ORO) staining. Hepatic inflammation was evaluated by F4/80 and Ly6G immunohistochemistry (IHC) and myeloperoxidase (MPO) measurement. Pathways and transcription factors relevant to MASLD were analyzed by using microarray data from patients' livers. Oxidative damage was evaluated by detecting reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Co-immunoprecipitation (CoIP), cellular thermal shift assay (CETSA) and surface plasmon resonance (SPR) were used to validate the binding between CA and its target protein. CA significantly alleviated liver damage, steatosis and inflammatory injury, and reduced the elevated NAFLD activity score (NAS) in HFD-fed mice. Clinical data indicate that fatty acid metabolism and ROS generation are pivotal in MASLD progression. CA increased the expression of fibroblast growth factor 21 (FGF21), FGF receptor 1 (FGFR1) and ß-Klotho (KLB), and promoted fatty acid consumption. Additionally, CA mitigated oxidative stress injury and activated nuclear factor erythroid 2-related factor-2 (Nrf2). In primary hepatocytes isolated from Nrf2 knockout mice, CA's promotion on FGF21 release and inhibition on oxidative stress and lipotoxicity was disappeared. CA could directly bind to kelch-like ECH-associated protein 1 (Keap1) that is an Nrf2 inhibitor protein. This study suggests that CA alleviates MASLD by reducing hepatic lipid accumulation, lipotoxicity and oxidative damage through activating Nrf2 via binding to Keap1.

6.
Int Immunopharmacol ; 141: 112929, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39153307

ABSTRACT

As a prominent complication of diabetes mellitus (DM) affecting microvasculature, diabetic retinopathy (DR) originates from blood-retinal barrier (BRB) damage. Natural polyphenolic compound chlorogenic acid (CGA) has already been reported to alleviate DR. This study delves into the concrete mechanism of the CGA-supplied protection against DR and elucidates its key target in retinal endothelial cells. DM in mice was induced using streptozotocin (STZ). CGA mitigated BRB dysfunction, leukocytes adhesion and the formation of acellular vessels in vivo. CGA suppressed retinal inflammation and the release of tumor necrosis factor-α (TNFα) by inhibiting nuclear factor kappa-B (NFκB). Furthermore, CGA reduced the TNFα-initiated adhesion of peripheral blood mononuclear cell (PBMC) to human retinal endothelial cell (HREC). CGA obviously decreased the TNFα-upregulated expression of vascular cell adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1), and abrogated the TNFα-induced NFκB activation in HRECs. All these phenomena were reversed by overexpressing type 1 TNF receptor (TNFR1) in HRECs. The CGA-provided improvement on leukocytes adhesion and retinal inflammation was disappeared in mice injected with an endothelial-specific TNFR1 overexpression adeno-associated virus (AAV). CGA reduced the interaction between TNFα and TNFR1 through binding to TNFR1 in retinal endothelial cells. In summary, excepting reducing TNFα expression via inhibiting retinal inflammation, CGA also reduced the adhesion of leukocytes to retinal vessels through decreasing VCAM1 and ICAM1 expression via blocking the TNFα-initiated NFκB activation by targeting TNFR1 in retinal endothelial cells. All of those mitigated retinal inflammation, ultimately alleviating BRB breakdown in DR.


Subject(s)
Chlorogenic Acid , Diabetic Retinopathy , Endothelial Cells , Mice, Inbred C57BL , NF-kappa B , Receptors, Tumor Necrosis Factor, Type I , Retina , Tumor Necrosis Factor-alpha , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/immunology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Humans , Tumor Necrosis Factor-alpha/metabolism , Male , NF-kappa B/metabolism , Mice , Retina/drug effects , Retina/pathology , Retina/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Intercellular Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Cell Adhesion/drug effects , Blood-Retinal Barrier/drug effects , Blood-Retinal Barrier/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cells, Cultured , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism
7.
Opt Lett ; 49(13): 3556-3559, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950208

ABSTRACT

Optical image encryption has long been an important concept in the fields of photonic network processing and communication. Here, we propose a convolution-like operation-based optical image encryption algorithm exploiting a silicon photonic multiplexing architecture to achieve content security. Particularly, the encryption process is completed in a 3 × 3 cross-shaped photonic micro-ring resonator (MRR) array on chip. For the first time, to the best of our knowledge, this algorithm encodes information in an integrated intensity modulation, effectively reducing the encoding difficulty. Moreover, the high reliability and scalability of optical encryption are ensured using both linear and nonlinear operations on photonic chips according to characteristics of MRRs. As the encryption and decryption experiments show, the image restoration accuracy of our optical encryption algorithm exceeds 99% under real system noise at the pixel level, indicating its noise-robust property. Meanwhile, the peak signal-to-noise ratios of the restored and encrypted images are >60 and <15 dB, respectively, revealing both the high accuracy of the restored image and the small correlation between the encrypted and original images. This work adds to the rapidly expanding field of optical image encryption on photonic chips.

8.
World J Clin Cases ; 12(18): 3596-3602, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983430

ABSTRACT

BACKGROUND: The bacterium Eikenella, classified as a gram-negative member of the phylum Proteobacteria, is distinguished by its rarity, corrosive nature, facultative anaerobic properties, and conditional pathogenicity. It represents the sole species within its genus-Eikenella corrodens (E. corrodens)-and can be found colonizing both human and animal oral and nasopharyngeal regions. Additionally, it occasionally inhabits the gastrointestinal or urogenital tracts. However, its slow growth rate can be attributed to its high nutritional requirements. However, there is an uneven distribution of construction and diagnostic capacity in China which poses undeniable challenges for the clinical examination and analysis of this case, especially in the basic hospitals. CASE SUMMARY: Here we presented a case of empyema associated with E. corrodens infection in a 67-year-old male patient without any previous history of infectious diseases in our primary hospital in Dongguan district of China. The patient was admitted due to recurrent worsening cough, sputum production, and dyspnea for 3 d, which had persisted for over 20 years. Moreover, the patient experienced a one-hour episode of unconsciousness. Upon admission, immediate comprehensive examinations were conducted on the patient which subsequently led to his admission to the intensive care unit. Meanwhile, the patient presented with drowsiness and profuse sweating along with bilateral conjunctival edema observed during initiation of non-invasive ventilation, suggesting empyema. A significant amount of coffee-colored malodorous pleural fluid was drained during the procedure above and sent to the laboratory department for inspection. Finally, laboratory culture results confirmed the presence of E. corrodens infection in the pleural fluid sample. The patient received antimicrobial therapy until died on day 22 in the hospital. CONCLUSION: In this report, we presented a case of empyema associated with E. corrodens infection. Multiple courses of morphological examination, viable culture analysis, and biochemical identification revealed its difficulties in detecting distinctive characteristics, as well as a detection model worth promoting. It's just that there were still certain deficiencies in terms of morphological assessment, biochemical identification, and drug susceptibility testing.

9.
Front Bioeng Biotechnol ; 12: 1372245, 2024.
Article in English | MEDLINE | ID: mdl-38751868

ABSTRACT

Background: Cluster of Differentiation 93 (CD93) plays an important role in angiogenesis and is considered an important target for inhibiting tumor angiogenesis, but there are currently no therapeutic antibodies against CD93 in the clinic. Thus, we describe the screening of novel nanobodies (Nbs) targeting human CD93 from a phage library of shark-derived Nbs. Methods: Screening and enrichment of phage libraries by enzyme-linked immunosorbent assay (ELISA). Anti-CD93 Nbs were purified by expression in E. coli. The binding affinity of anti-CD93 Nbs NC81/NC89 for CD93 was examined by flow cytometry (FC) and ELISA. The thermal stability of NC81/NC89 was examined by ELISA and CD spectroscopy. Afterward, the anti-angiogenic ability of NC81/NC89 was examined by MTT, wound healing assay, and tube formation assay. The expression level of VE-cadherin (VE-Ca) and CD93 was detected by Western Blot (WB). The binding sites and binding forms of NC81/NC89 to CD93 were analyzed by molecular docking. Results: The anti-CD93 Nbs were screened in a phage library, expressed in E. coli, and purified to >95% purity. The results of FC and ELISA showed that NC81/NC89 have binding ability to human umbilical vein endothelial cells (HUVECs). The results of ELISA and CD spectroscopy showed that NC81/NC89 retained the ability to bind CD93 at 80°C and that the secondary structure remained stable. In vitro, the results showed that NC81 and NC89 significantly inhibited the proliferation and migration of human umbilical vein endothelial cells (HUVECs) as well as tube formation on Matrigel. Western Blot showed that NC81 and NC89 also inhibited the expression of VE-Ca thereby increasing vascular permeability. It was found during molecular docking that the CDR regions of NC81 and NC89 could be attached to CD93 by strong hydrogen bonds and salt bridges, and the binding sites were different. Conclusion: We have successfully isolated NC81 and NC89, which bind CD93, and both Nbs significantly inhibit angiogenesis and increase vascular permeability. These results suggest that NC81 and NC89 have potential clinical applications in angiogenesis-related therapies.

10.
J Hazard Mater ; 472: 134546, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38735185

ABSTRACT

In this study, we investigated the impact of fluctuating water levels on the distribution of lead (Pb) and zinc (Zn) in soil and sediments at a historical Pb-Zn smelting site along the Xiangjiang River. Despite the high pH levels (7 to 11) in the study area, which generally inhibits heavy metal solubility, we found that regular changes in water levels still affect Pb-Zn movement. Soil analysis revealed distinct redox zones within the unconfined aquifer, as shown by the variable Fe/Mn and Ce/Ce* ratios. Advanced techniques such as Mn K-edge XAFS, Mössbauer spectroscopy, and TOF-SIMS indicated persistent Fe-Mn redox cycling and highlighted the presence of Pb and Zn-rich manganese oxides near sulfur-bearing minerals. These findings suggest that acidic microzones produced by the oxidation of sulfur-bearing minerals become "refuges" for microbial and heavy metal activity. Considering that sulfur-containing minerals are widespread waste types in nonferrous metal smelting sites, these findings are instructive for a better understanding of the transformation mechanisms of heavy metal ions in nonferrous metal smelting-polluted environments and for guiding pollution remediation strategies.

11.
Front Microbiol ; 15: 1404366, 2024.
Article in English | MEDLINE | ID: mdl-38784792

ABSTRACT

Introduction: Biliary Infection in patients is a common and important phenomenon resulting in severe complications and high morbidity, while the distributions and drug resistance profiles of biliary bacteria and related risk factors are dynamic. This study explored the characteristics of and risk factors for biliary infection to promote the rational use of antibiotics in clinically. Methods: Bacterial identification and drug susceptibility testing were completed using the Vitek 2 Compact analysis system. The distribution and antibiotic-resistant characteristics of 3,490 strains of biliary bacteria in patients at Nankai Hospital from 2019 to 2021 were analyzed using Whonet 5.6 and SPSS 26.0 software. We then retrospectively analyzed the clinical data and risk factors associated with 2,340 strains of Gram-negative bacilli, which were divided into multidrug-resistant bacteria (1,508 cases) and non-multidrug-resistant bacteria (832 cases) by a multivariate Cox regression model. Results and discussion: A total of 3,490 pathogenic bacterial strains were isolated from bile samples, including 2,340 (67.05%) Gram-negative strains, 1,029 (29.48%) Gram-positive strains, and 109 (4.56%) fungal strains. The top five pathogenic bacteria were Escherichia coli, Klebsiella pneumoniae, Enterococcus faecium, Enterococcus faecalis, and Pseudomonas aeruginosa. The rate of Escherichia coli resistance to ciprofloxacin increased (p < 0.05), while the resistance to amikacin decreased (p < 0.05). The resistance of Klebsiella pneumoniae to cephalosporins, carbapenems, ß-lactamase inhibitors, cephalases, aminoglycosides, and quinolones increased (p < 0.05), and the resistance of Pseudomonas aeruginosa to piperacillin, piperacillin/tazobactam, ticacillin/clavulanic acid, and amicacin declined significantly (p < 0.05). The resistance of Enterococcus faecium to tetracycline increased by year (p < 0.05), and the resistance of Enterococcus faecalis to erythromycin and high-concentration gentamicin declined (p < 0.05). Multivariate logistic regression analysis suggested that the administration of third- or fourth-generation cephalosporins was an independent risk factor for biliary infection. In summary, Gram-negative bacilli were the most common pathogenic bacteria isolated from biliary infection patients, especially Escherichia coli, and the rates and patterns of drug resistance were high and in constant flux; therefore, rational antimicrobial drug use should be carried out considering risk factors.

12.
World J Hepatol ; 16(2): 264-278, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38495271

ABSTRACT

BACKGROUND: Liver fibrosis is a formidable global medical challenge, with no effective clinical treatment currently available. Yinhuang granule (YHG) is a proprietary Chinese medicine comprising Scutellariae Radix and Lonicerae Japonicae Flos. It is frequently used for upper respiratory tract infections, pharyngitis, as well as acute and chronic tonsillitis. AIM: To investigate the potential of YHG in alleviating carbon tetrachloride (CCl4)-induced liver fibrosis in mice. METHODS: To induce a hepatic fibrosis model in mice, this study involved intraperitoneal injections of 2 mL/kg of CCl4 twice a week for 4 wk. Meanwhile, liver fibrosis mice in the low dose of YHG (0.4 g/kg) and high dose of YHG (0.8 g/kg) groups were orally administered YHG once a day for 4 wk. Serum alanine/aspartate aminotransferase (ALT/AST) activity and liver hydroxyproline content were detected. Sirius red and Masson's trichrome staining assay were conducted. Real-time polymerase chain reaction, western-blot and enzyme-linked immunosorbent assay were conducted. Liver glutathione content, superoxide dismutase activity level, reactive oxygen species and protein carbonylation amount were detected. RESULTS: The administration of YHG ameliorated hepatocellular injury in CCl4-treated mice, as reflected by decreased serum ALT/AST activity and improved liver histological evaluation. YHG also attenuated liver fibrosis, evident through reduced liver hydroxyproline content, improvements in Sirius red and Masson's trichrome staining, and lowered serum hyaluronic acid levels. Furthermore, YHG hindered the activation of hepatic stellate cells (HSCs) and ameliorated oxidative stress injury and inflammation in liver from CCl4-treated mice. YHG prompted the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated the expression of Nrf2-dependent downstream antioxidant genes. In addition, YHG promoted mitochondrial biogenesis in liver from CCl4-treated mice, as demonstrated by increased liver adenosine triphosphate content, mitochondrial DNA levels, and the expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha and nuclear respiratory factor 1. CONCLUSION: YHG effectively attenuates CCl4-induced liver fibrosis in mice by inhibiting the activation of HSCs, reducing inflammation, alleviating liver oxidative stress damage through Nrf2 activation, and promoting liver mitochondrial biogenesis.

13.
Opt Lett ; 49(4): 838-841, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359195

ABSTRACT

We experimentally establish a 3 × 3 cross-shaped micro-ring resonator (MRR) array-based photonic multiplexing architecture relying on silicon photonics to achieve parallel edge extraction operations in images for photonic convolution neural networks. The main mathematical operations involved are convolution. Precisely, a faster convolutional calculation speed of up to four times is achieved by extracting four feature maps simultaneously with the same photonic hardware's structure and power consumption, where a maximum computility of 0.742 TOPS at an energy cost of 48.6 mW and a convolution accuracy of 95.1% is achieved in an MRR array chip. In particular, our experimental results reveal that this system using parallel edge extraction operators instead of universal operators can improve the imaging recognition accuracy for CIFAR-10 dataset by 6.2% within the same computing time, reaching a maximum of 78.7%. This work presents high scalability and efficiency of parallel edge extraction chips, furnishing a novel, to the best of our knowledge, approach to boost photonic computing speed.

14.
Comput Struct Biotechnol J ; 23: 688-699, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38292476

ABSTRACT

The self-assembly of Aß peptides into toxic oligomers and fibrils is the primary cause of Alzheimer's disease. Moreover, the conformational transition from helix to sheet is considered a crucial step in the aggregation of Aß peptides. However, the structural details of this process still remain unclear due to the heterogeneity and transient nature of the Aß peptides. In this study, we developed an enhanced sampling strategy that combines artificial neural networks (ANN) with metadynamics to explore the conformational space of the Aß42 peptides. The strategy consists of two parts: applying ANN to optimize CVs and conducting metadynamics based on the resulting CVs to sample conformations. The results showed that this strategy achieved better sampling performance in terms of the distribution of sampled conformations. The sampling efficiency is increased by 10-fold compared to our previous Hamiltonian Exchange Molecular Dynamics (MD) and by 1000-fold compared to ordinary MD. Based on the sampled conformations, we constructed a Markov state model to understand the detailed transition process. The intermediate states in this process are identified, and the connecting paths are analyzed. The conformational transitions in D23-K28 and M35-V40 are proven to be crucial for aggregation. These results are helpful in clarifying the mechanism and process of Aß42 peptide aggregation. D23-K28 and M35-V40 can be identified as potential targets for screening and designing inhibitors of Aß peptide aggregation.

15.
J Ethnopharmacol ; 322: 117554, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38092318

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA), a chronic auto-immune disease, will cause serious joint damage and disability. Glycyrrhizae Radix et Rhizoma (GRR) is commonly included in many anti-RA formulas used in the clinical practice in China. AIM OF THE STUDY: To elucidate the alleviation of GRR and its active compounds on RA and the possible engaged mechanism. MATERIALS AND METHODS: The clinical score, paw swelling degree and pain threshold were detected in the collagen-induced arthritis (CIA) in DBA/1 mice. The ankle joints of mice were observed by using X-Ray, hematoxylin-eosin (H&E), masson's trichrome (Masson), and safranin O and fast green (Safranin O) staining. The potential targets of GRR were predicted by network pharmacology and further verified by using enzyme-linked immunosorbent assay (ELISA) and western-blot. Real-time polymerase chain reaction (Real-time PCR) and wound healing assay were conducted in synovial MH7A cells. The interaction between active compounds and potential targets predicted by molecular docking was confirmed by using cellular thermal shift assay (CETSA). RESULTS: GRR (615 mg/kg) obviously alleviated CIA in mice. Network pharmacology implied that GRR might affect angiogenesis and inflammation, among which vascular endothelial growth factor-A (VEGF-A), tumor necrosis factor-α (TNFα), interleukin-1ß (IL-1ß), IL-6 and phosphorylated protein kinase B (AKT) might be the key targets involved in this process. GRR decreased AKT phosphorylation and reduced the elevated levels of TNFα, VEGF-A, IL-1ß and IL-6. Next, in vitro results demonstrated that glycyrrhetinic acid (GA) and isoliquiritigenin (ISL) were two active compounds that inhibited TNFα-induced synovial cell angiogenesis and inflammation. Moreover, GA and ISL actually improved RA in CIA mice. The results of molecular docking and CETSA displayed that ISL and GA might interact with TNF receptor-1 (TNFR1), toll-like receptor-4 (TLR4) and VEGF receptor-2 (VEGFR2), thereby contributing to their inhibition on angiogenesis and inflammation. CONCLUSION: GRR and two active compounds, including ISL and GA, alleviated RA via inhibiting angiogenesis and inflammation.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Glycyrrhiza , Mice , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Vascular Endothelial Growth Factor A , Proto-Oncogene Proteins c-akt , Tumor Necrosis Factor-alpha , Interleukin-6 , Molecular Docking Simulation , Mice, Inbred DBA , Arthritis, Rheumatoid/pathology , Inflammation
16.
Front Pharmacol ; 14: 1303012, 2023.
Article in English | MEDLINE | ID: mdl-38155904

ABSTRACT

Hepatic fibrosis is the formation of scar tissue in the liver. This scar tissue replaces healthy liver tissue and can lead to liver dysfunction and failure if left untreated. It is usually caused by chronic liver disease, such as hepatitis B or C, alcohol abuse, or non-alcoholic fatty liver disease. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of hepatic stellate cells (HSCs). HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Pathological angiogenesis plays a crucial role in the development of hepatic fibrosis by promoting the growth of new blood vessels in the liver. These new vessels increase blood flow to the damaged areas of the liver, which triggers the activation of HSCs. HSCs are responsible for producing excess collagen and other extracellular matrix proteins that contribute to the development of fibrosis. Traditional Chinese medicine (TCM) has been found to target pathological angiogenesis, thereby providing a potential treatment option for hepatic fibrosis. Several studies have demonstrated that TCM exhibits anti-angiogenic effects by inhibiting the production of pro-angiogenic factors, such as vascular endothelial growth factor and angiopoietin-2, and by reducing the proliferation of endothelial cells. Reviewing and highlighting the unique TCM recognition of treating hepatic fibrosis by targeting pathological angiogenesis may shed light on future hepatic fibrosis research.

17.
World J Hepatol ; 15(10): 1091-1108, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37970620

ABSTRACT

Hepatic fibrosis is a common pathological process that occurs in the development of various chronic liver diseases into cirrhosis and liver cancer, characterized by excessive deposition of the extracellular matrix. In the past, hepatic fibrosis was thought to be a static and irreversible pathological process. In recent years, with the rapid development of molecular biology and the continuous in-depth study of the liver at the microscopic level, more and more evidence has shown that hepatic fibrosis is a dynamic and reversible process. Therefore, it is particularly important to find an effective, simple, and inexpensive method for its prevention and treatment. Traditional Chinese medicine (TCM) occupies an important position in the treatment of hepatic fibrosis due to its advantages of low adverse reactions, low cost, and multi-target effectiveness. A large number of research results have shown that TCM monomers, single herbal extracts, and TCM formulas play important roles in the prevention and treatment of hepatic fibrosis. Oxidative stress (OS) is one of the key factors in the occurrence and development of hepatic fibrosis. Therefore, this article reviews the progress in the understanding of the mechanisms of TCM monomers, single herbal extracts, and TCM formulas in preventing and treating hepatic fibrosis by inhibiting OS in recent years, in order to provide a reference and basis for drug therapy of hepatic fibrosis.

18.
Biochem Pharmacol ; 217: 115808, 2023 11.
Article in English | MEDLINE | ID: mdl-37716622

ABSTRACT

Triple-negative breast cancer (TNBC) is heterogeneous and aggressive, with high vascularity and frequent metastasis. We have already found natural flavonoid scutellarin (SC) suppressed spontaneous TNBC metastasis via normalizing tumor vasculature in vivo. In this study, supernatant from tumor necrosis factorα (TNFα)-treated human mammary microvascular endothelial cell (HMMEC) promoted cell migration and pseudopod formation in TNBC cells, but these phenomena were disappeared in SC-co-treated HMMEC. TNFα enhanced the expression of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in both HMMEC and human umbilical vein endothelial cell (HUVEC). G-CSF promoted TNBC migration and invasion in vitro, while G-CSF neutralization antibody and SC both inhibited TNBC metastasis in Balb/c mice. SC had no inhibition on the G-CSF-induced TNBC cell migration, but reduced G-CSF content in TNBC tumor tissues and TNFα-stimulated endothelial cells (ECs). SC restricted the nuclear translocation of runt-related transcription factor 1 (RUNX1) in TNBC tumor vessels and TNFα-treated ECs. RUNX1 was found to directly bind to the promoter of G-CSF in TNBC tumor vessels and regulated G-CSF expression. TNF receptor 2 (TNFR2) was crucial for regulating the TNFα-induced RUNX1 activation and G-CSF expression. Notably, SC hindered the interaction between TNFα and TNFR2 via binding to TNFR2. This work demonstrated that SC reduced TNBC metastasis by targeting TNFα/TNFR2-initiated RUNX1 activation and subsequent G-CSF production in TNBC-associated ECs.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Tumor Necrosis Factor-alpha/metabolism , Triple Negative Breast Neoplasms/metabolism , Receptors, Tumor Necrosis Factor, Type II , Granulocyte Colony-Stimulating Factor , Human Umbilical Vein Endothelial Cells/metabolism , Cell Line, Tumor
19.
Front Pharmacol ; 14: 1195146, 2023.
Article in English | MEDLINE | ID: mdl-37361209

ABSTRACT

MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.

20.
Org Biomol Chem ; 21(27): 5560-5566, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37345756

ABSTRACT

Mercury is a highly toxic heavy metal and it poses a serious threat to the natural environment and human health. Thus, selective detection of trace mercury (e.g. inorganic mercury and methylmercury) in the environment is critical yet challenging. Herein, we describe the rational design and facile synthesis of a new triphenylamine-based phenylboronic acid fluorescent probe (TPA-PBA) for selective detection of Hg2+ and CH3Hg+. Due to the inherent specificity of the displacement reaction between phenylboronic acid and mercury, this probe exhibits exceptionally high selectivity towards Hg2+/CH3Hg+ against other tested ions with ppb-level sensitivity. More importantly, the probe TPA-PBA is effective and selective in detecting Hg2+/CH3Hg+ in tap water and real-world groundwater, indicating its potential practical applications in in situ and online mercury detection in real-world scenarios. With TPA-PBA based test strips Hg2+ can be distinguished from CH3Hg+ by the naked eye. This study could accelerate the development of low-cost, highly efficient and selective fluorescent probes for rapid trace mercury detection.

SELECTION OF CITATIONS
SEARCH DETAIL