Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.226
Filter
3.
Nat Commun ; 15(1): 8002, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266533

ABSTRACT

The KRAS oncogene drives many common and highly fatal malignancies. These include pancreatic, lung, and colorectal cancer, where various activating KRAS mutations have made the development of KRAS inhibitors difficult. Here we identify the scaffold protein SH3 and multiple ankyrin repeat domain 3 (SHANK3) as a RAS interactor that binds active KRAS, including mutant forms, competes with RAF and limits oncogenic KRAS downstream signalling, maintaining mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity at an optimal level. SHANK3 depletion breaches this threshold, triggering MAPK/ERK signalling hyperactivation and MAPK/ERK-dependent cell death in KRAS-mutant cancers. Targeting this vulnerability through RNA interference or nanobody-mediated disruption of the SHANK3-KRAS interaction constrains tumour growth in vivo in female mice. Thus, inhibition of SHANK3-KRAS interaction represents an alternative strategy for selective killing of KRAS-mutant cancer cells through excessive signalling.


Subject(s)
MAP Kinase Signaling System , Mutation , Nerve Tissue Proteins , Proto-Oncogene Proteins p21(ras) , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , Mice , Cell Line, Tumor , Female , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , MAP Kinase Signaling System/genetics , Cell Death/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice, Nude , Microfilament Proteins
4.
Nat Commun ; 15(1): 7589, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217144

ABSTRACT

The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.


Subject(s)
Endocardium , Hematopoietic Stem Cells , Zebrafish , Animals , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Endocardium/cytology , Endocardium/metabolism , Hematopoiesis/physiology , Heart/physiology , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Single-Cell Analysis , Cell Lineage , Erythropoiesis/physiology , Animals, Genetically Modified
6.
Blood ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39158072

ABSTRACT

Loss of endothelial barrier function contributes to the pathophysiology of many inflammatory diseases. Coagulation factor XI (FXI) plays a regulatory role in inflammation. While activation of FXI increases vascular permeability in vivo, the mechanism by which FXI or its activated form FXIa disrupts endothelial barrier function is unknown. We investigated the role of FXIa in human umbilical vein endothelial cell (HUVEC) or human aortic endothelial cell (HAEC) permeability. The expression patterns of vascular endothelial (VE)-cadherin and other proteins of interest were examined by Western blot or immunofluorescence. Endothelial cell permeability was analyzed by transwell assay. We demonstrate that FXIa increases endothelial cell permeability by inducing cleavage of the VE-cadherin extracellular domain, releasing a soluble fragment. The activation of a disintegrin and metalloproteinase 10 (ADAM10) mediates the FXIa-dependent cleavage of VE-cadherin, as adding an ADAM10 inhibitor prevented the cleavage of VE-cadherin induced by FXIa. The binding of FXIa with plasminogen activator inhibitor 1 and very low-density lipoprotein receptor on HUVEC or HAEC surfaces activates vascular endothelial growth receptor factor 2 (VEGFR2). The activation of VEGFR2 triggers the MAPK signaling pathway and promotes the expression of active ADAM10 on the cell surface. In a pilot experiment using an established baboon model of sepsis, the inhibition of FXI activation significantly decreased the levels of soluble VE-cadherin to preserve barrier function. This study reveals a novel pathway by which FXIa regulates vascular permeability. The effect of FXIa on barrier function may be another way by which FXIa contributes to the development of inflammatory diseases.

7.
Cancer Discov ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39121480

ABSTRACT

Current treatments for KRAS-mutant colorectal cancers (CRCs) are often limited by cellular plasticity and rewiring responses. Here we describe a promising therapeutic strategy that simultaneously targets epigenetic and oncogenic signals. Specifically, we show that inhibitors of the histone methyltransferase, EZH2, synergize with various RAS pathway inhibitors and promote dramatic tumor regression in vivo. Together these agents cooperatively suppress WNT-driven transcription and drive CRCs into a more differentiated cell state by inducing the Groucho/TLE corepressor, TLE4, along with a network of WNT pathway inhibitors and intestinal differentiation proteins. However, these agents also induce the pro-apoptotic protein BMF, which subsequently kills these more differentiated cells. Accordingly, cell death can be prevented by activating ß-catenin, blocking differentiation, or by ablating BMF expression. Collectively, these studies reveal a new therapeutic approach for treating KRAS-mutant CRCs and illustrate a critical convergence of EZH2 and RAS on oncogenic WNT signals, intestinal differentiation, and apoptosis.

8.
Pediatr Radiol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196382

ABSTRACT

Paediatric radiology is a fascinating and diverse field of medicine with many opportunities to gain expertise in a range of imaging modalities and body areas. Working with children makes imaging both rewarding and challenging, due to the wide range of patient ages encountered and the inherent variation in developmental needs. This requires a patient-focussed approach to manage their anxiety and ensure cooperation of the patient and their carers. Several approaches to dealing with children have been developed including recognising individual needs, empathising with the child and carers, and involving the use of play and a range of age-relevant preparation materials. All of these make the radiology imaging environment and encounter a more effective and collaborative process. The purpose of this manuscript is to present a practical guide to overcoming these challenges, by making the child the focus of their radiological examination.

9.
Proc Natl Acad Sci U S A ; 121(36): e2411846121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39190348

ABSTRACT

Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.


Subject(s)
Caenorhabditis elegans , GTP-Binding Protein alpha Subunits, Gq-G11 , Optogenetics , RGS Proteins , Signal Transduction , Zebrafish , Animals , Optogenetics/methods , Caenorhabditis elegans/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , RGS Proteins/metabolism , RGS Proteins/genetics , Zebrafish/embryology , Neurons/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Protein Domains , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Drosophila/metabolism
10.
Cell Rep ; 43(7): 114406, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38963759

ABSTRACT

Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.


Subject(s)
Acetaldehyde , Melanoma , Zebrafish , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Melanoma/drug therapy , Acetaldehyde/metabolism , Acetaldehyde/pharmacology , Animals , Humans , Cell Line, Tumor , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Histones/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Transcription, Genetic/drug effects , Neural Crest/metabolism , Neural Crest/drug effects , Gene Expression Regulation, Neoplastic/drug effects
11.
Metabolites ; 14(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39057702

ABSTRACT

Over the millennia, patterns of food consumption have changed; however, foods were always whole foods. Ultra-processed foods (UPFs) have been a very recent development and have become the primary food source for many people. The purpose of this review is to propose the hypothesis that, forsaking the evolutionary dietary environment, and its complex milieu of compounds resulting in an extensive metabolome, contributes to chronic disease in modern humans. This evolutionary metabolome may have contributed to the success of early hominins. This hypothesis is based on the following assumptions: (1) whole foods promote health, (2) essential nutrients cannot explain all the benefits of whole foods, (3) UPFs are much lower in phytonutrients and other compounds compared to whole foods, and (4) evolutionary diets contributed to a more diverse metabolome. Evidence will be presented to support this hypothesis. Nutrition is a matter of systems biology, and investigating the evolutionary metabolome, as compared to the metabolome of modern humans, will help elucidate the hidden connections between diet and health. The effect of the diet on the metabolome may also help shape future dietary guidelines, and help define healthy foods.

12.
PLoS One ; 19(7): e0306868, 2024.
Article in English | MEDLINE | ID: mdl-39083456

ABSTRACT

The endocannabinoid system (ECS) plays a major role in the maintenance of bodily homeostasis and adaptive response to external insults. It has been shown to regulate crucial physiological processes and behaviors, spanning nervous functions, anxiety, cognition, and pain sensation. Due to this broad activity, the ECS has been explored as a potential therapeutic target in the treatment of select diseases. However, until there is a more comprehensive understanding of how ECS activation by exogenous and endogenous ligands manifests across disparate tissues and cells, discretion should be exercised. Previous work has investigated how endogenous cannabinoid signaling impacts skeletal muscle development and differentiation. However, the effects of activation of the ECS by delta-9-tetrahydrocannabinol (THC, the most psychoactive component of cannabis) on skeletal muscle development, particularly in utero, remain unclear. To address this research gap, we used a highly translational non-human primate model to examine the potential impact of chronic prenatal THC exposure on fetal and infant musculoskeletal development. RNA was isolated from the skeletal muscle and analyzed for differential gene expression using a Nanostring nCounter neuroinflammatory panel comprised of 770 genes. Histomorphological evaluation of muscle morphology and composition was also performed. Our findings suggest that while prenatal THC exposure had narrow overall effects on fetal and infant muscle development, the greatest impacts were observed within pathways related to inflammation and cytokine signaling, which suggest the potential for tissue damage and atrophy. This pilot study establishes feasibility to evaluate neuroinflammation due to prenatal THC exposure and provides rationale for follow-on studies that explore the longer-term implications and functional consequences encountered by offspring as they continue to mature.


Subject(s)
Dronabinol , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Dronabinol/pharmacology , Animals , Female , Pregnancy , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Prenatal Exposure Delayed Effects/chemically induced , Musculoskeletal Development/drug effects , Macaca mulatta , Fetal Development/drug effects , Male
13.
Am J Physiol Heart Circ Physiol ; 327(3): H701-H714, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39028280

ABSTRACT

Delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, remains a schedule I substance, thus safety data regarding the effects on the cardiovascular and prenatal health are limited. Importantly, there is evidence showing prenatal cannabis exposure can negatively impact fetal organ development, including the cardiovascular system. THC can cross the placenta and bind to cannabinoid receptors expressed in the developing fetus, including on endothelial cells. To understand the impact of prenatal THC exposure on the fetal cardiovascular system, we used our rhesus macaque model of prenatal daily edible THC consumption. Before conception, animals were acclimated to THC (2.5 mg/7 kg/day, equivalent to a heavy medical cannabis dose) and maintained on this dose daily throughout pregnancy. Fetal tissue samples were collected at gestational day 155 (full term is 168 days). Our model showed that in utero THC exposure was associated with a decreased heart weight-to-body weight ratio in offspring, warranting further mechanistic investigation. Histological examination of the fetal cardiac and vascular tissues did not reveal any significant effect of THC exposure on the maturity of collagen within the fetal heart or the aorta. Total collagen III expression and elastin production and organization were unchanged. However, bulk RNA-sequencing of vascular cells in the umbilical vein, umbilical artery, and fetal aorta demonstrated that THC alters the fetal vascular transcriptome and is associated with upregulated expression of genes involved in carbohydrate metabolism and inflammation. The long-term consequences of these findings are unknown but suggest that prenatal THC exposure may affect cardiovascular development in offspring.NEW & NOTEWORTHY Prenatal cannabis use is increasing and despite the public health relevance, there is limited safety data regarding its impact on offspring cardiovascular health outcomes. We used a translational, nonhuman primate model of daily edible Δ-9-tetrahydrocannabinol (THC) consumption during pregnancy to assess its effects on the fetal cardiovascular system. THC-exposed fetal vascular tissues displayed upregulation of genes involved in cellular metabolism and inflammation, suggesting that prenatal THC exposure may impact fetal vascular tissues.


Subject(s)
Dronabinol , Extracellular Matrix , Macaca mulatta , Transcriptome , Animals , Dronabinol/toxicity , Pregnancy , Female , Transcriptome/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Prenatal Exposure Delayed Effects , Fetal Heart/drug effects , Fetal Heart/metabolism
14.
ACS Appl Mater Interfaces ; 16(24): 31798-31806, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38835166

ABSTRACT

Surface barriers are commonly observed in nanoporous materials. Although researchers have explored methods to repair defects or create flawless crystals to mitigate surface barriers, these approaches may not always be practical or readily achievable in targeted metal-organic frameworks (MOFs). In our study, we propose an alternative approach focusing on the introduction of diverse ligands onto a MOF-808 node to finely adjust its adsorption and mass transport characteristics. Significantly, our findings indicate that while adsorption curves can be inferred based on the MOF's chemical composition and the probing molecule, surface permeabilities exhibit variations dependent on the specific probe utilized and the incorporated ligand. Our investigation, considering van der Waals forces exclusively between the adsorbate (e.g., n-hexane, propane, and benzene) and the adsorbent, revealed that augmenting these interactions can indeed improve surface permeation to a certain extent. Conversely, strong adsorption resulting from hydrogen bonding interactions, particularly with water in modified MOFs, led to compromised permeation within the MOF crystals. These outcomes provide valuable insights for the porous materials community and offer guidance in the development of adsorbents with enhanced affinity and superior mass transport properties for gases and vapors.

16.
Article in English | MEDLINE | ID: mdl-38839713

ABSTRACT

Attention must be carefully controlled to avoid distraction by salient stimuli. The signal suppression hypothesis proposes that salient stimuli can be proactively suppressed to prevent distraction. Although this hypothesis has garnered much support, most previous studies have used one class of salient distractors: color singletons. It therefore remains unclear whether other kinds of salient distractors can also be suppressed. The current study directly compared suppression of a variety of salient stimuli using an attentional capture task that was adapted for eye tracking. The working hypothesis was that static salient stimuli (e.g., color singletons) would be easier to suppress than dynamic salient stimuli (e.g., motion singletons). The results showed that participants could ignore a wide variety of salient distractors. Importantly, suppression was weaker and slower to develop for dynamic salient stimuli than static salient stimuli. A final experiment revealed that adding a static salient feature to a dynamic motion distractor greatly improved suppression. Altogether, the results suggest that an underlying inhibitory process is applied to all kinds of salient distractors, but that suppression is more readily applied to static features than dynamic features.

17.
Eur Radiol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900281

ABSTRACT

OBJECTIVES: Artificial intelligence (AI) tools are becoming more available in modern healthcare, particularly in radiology, although less attention has been paid to applications for children and young people. In the development of these, it is critical their views are heard. MATERIALS AND METHODS: A national, online survey was publicised to UK schools, universities and charity partners encouraging any child or young adult to participate. The survey was "live" for one year (June 2022 to 2023). Questions about views of AI in general, and in specific circumstances (e.g. bone fractures) were asked. RESULTS: One hundred and seventy-one eligible responses were received, with a mean age of 19 years (6-23 years) with representation across all 4 UK nations. Most respondents agreed or strongly agreed they wanted to know the accuracy of an AI tool that was being used (122/171, 71.3%), that accuracy was more important than speed (113/171, 66.1%), and that AI should be used with human oversight (110/171, 64.3%). Many respondents (73/171, 42.7%) felt AI would be more accurate at finding problems on bone X-rays than humans, with almost all respondents who had sustained a missed fracture strongly agreeing with that sentiment (12/14, 85.7%). CONCLUSIONS: Children and young people in our survey had positive views regarding AI, and felt it should be integrated into modern healthcare, but expressed a preference for a "medical professional in the loop" and accuracy of findings over speed. Key themes regarding information on AI performance and governance were raised and should be considered prior to future AI implementation for paediatric healthcare. CLINICAL RELEVANCE STATEMENT: Artificial intelligence (AI) integration into clinical practice must consider all stakeholders, especially paediatric patients who have largely been ignored. Children and young people favour AI involvement with human oversight, seek assurances for safety, accuracy, and clear accountability in case of failures. KEY POINTS: Paediatric patient's needs and voices are often overlooked in AI tool design and deployment. Children and young people approved of AI, if paired with human oversight and reliability. Children and young people are stakeholders for developing and deploying AI tools in paediatrics.

18.
Artif Organs ; 48(9): 943-960, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38887912

ABSTRACT

BACKGROUND: Tissue stimulations greatly affect cell growth, phenotype, and function, and they play an important role in modeling tissue physiology. With the goal of understanding the cellular mechanisms underlying the response of tissues to external stimulations, in vitro models of tissue stimulation have been developed in hopes of recapitulating in vivo tissue function. METHODS: Herein we review the efforts to create and validate tissue stimulators responsive to electrical or mechanical stimulation including tensile, compression, torsion, and shear. RESULTS: Engineered tissue platforms have been designed to allow tissues to be subjected to selected types of mechanical stimulation from simple uniaxial to humanoid robotic stain through equal-biaxial strain. Similarly, electrical stimulators have been developed to apply selected electrical signal shapes, amplitudes, and load cycles to tissues, lending to usage in stem cell-derived tissue development, tissue maturation, and tissue functional regeneration. Some stimulators also allow for the observation of tissue morphology in real-time while cells undergo stimulation. Discussion on the challenges and limitations of tissue simulator development is provided. CONCLUSIONS: Despite advances in the development of useful tissue stimulators, opportunities for improvement remain to better reproduce physiological functions by accounting for complex loading cycles, electrical and mechanical induction coupled with biological stimuli, and changes in strain affected by applied inputs.


Subject(s)
Tissue Engineering , Humans , Tissue Engineering/methods , Animals , Electric Stimulation/methods , Stress, Mechanical , Biomechanical Phenomena
19.
J Correct Health Care ; 30(4): 270-274, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38935482

ABSTRACT

The case fatality rate (CFR) is an important metric in the correctional setting because it permits assessment of the lethality of an infectious agent independent of its underlying variations in transmissibility and incidence. Several studies have reported that incarceration is associated with both increased COVID-19 incidence and mortality. CFR, sometimes referred to as infection fatality rate for COVID-19, was used to compare mortality in a population at two points in time. A retrospective cohort study design was used to assess age-adjusted mortality among people diagnosed with COVID-19 in the Texas prison system and the Texas nonincarcerated population from January 1, 2020, through December 31, 2021. For each 6-month period under study, the Texas prison population had a substantially lower age-adjusted CFR compared with the Texas nonincarcerated population. However, in the absence of information on underlying COVID-19 severity, comorbidities, and other potential confounding factors in these two populations, it is difficult to make strong inferences based on a comparison of their CFRs. Future research, with careful attention to bias and confounding, should examine the specific health system factors that may be used to reduce morbidity and mortality associated with infectious disease outbreaks in prisons.


Subject(s)
COVID-19 , Prisons , Humans , COVID-19/mortality , COVID-19/epidemiology , Texas/epidemiology , Retrospective Studies , Male , Prisons/statistics & numerical data , Female , Adult , Middle Aged , Prisoners/statistics & numerical data , SARS-CoV-2 , Aged
20.
Clin Sci (Lond) ; 138(10): 573-597, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718356

ABSTRACT

The three striatins (STRN, STRN3, STRN4) form the core of STRiatin-Interacting Phosphatase and Kinase (STRIPAK) complexes. These place protein phosphatase 2A (PP2A) in proximity to protein kinases thereby restraining kinase activity and regulating key cellular processes. Our aim was to establish if striatins play a significant role in cardiac remodelling associated with cardiac hypertrophy and heart failure. All striatins were expressed in control human hearts, with up-regulation of STRN and STRN3 in failing hearts. We used mice with global heterozygote gene deletion to assess the roles of STRN and STRN3 in cardiac remodelling induced by angiotensin II (AngII; 7 days). Using echocardiography, we detected no differences in baseline cardiac function or dimensions in STRN+/- or STRN3+/- male mice (8 weeks) compared with wild-type littermates. Heterozygous gene deletion did not affect cardiac function in mice treated with AngII, but the increase in left ventricle mass induced by AngII was inhibited in STRN+/- (but not STRN3+/-) mice. Histological staining indicated that cardiomyocyte hypertrophy was inhibited. To assess the role of STRN in cardiomyocytes, we converted the STRN knockout line for inducible cardiomyocyte-specific gene deletion. There was no effect of cardiomyocyte STRN knockout on cardiac function or dimensions, but the increase in left ventricle mass induced by AngII was inhibited. This resulted from inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. The data indicate that cardiomyocyte striatin is required for early remodelling of the heart by AngII and identify the striatin-based STRIPAK system as a signalling paradigm in the development of pathological cardiac hypertrophy.


Subject(s)
Angiotensin II , Cardiomegaly , Mice, Knockout , Myocytes, Cardiac , Animals , Angiotensin II/pharmacology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Male , Humans , Muscle Proteins/metabolism , Muscle Proteins/genetics , Ventricular Remodeling , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Calmodulin-Binding Proteins , Nerve Tissue Proteins
SELECTION OF CITATIONS
SEARCH DETAIL