Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Comput Methods Programs Biomed ; 254: 108306, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968828

ABSTRACT

BACKGROUND AND OBJECTIVE: Hepatitis virus infections are affecting millions of people worldwide, causing death, disability, and considerable expenditure. Chronic infection with hepatitis C virus (HCV) can cause severe public health problems because of their high prevalence and poor long-term clinical outcomes. Thus a fractional-order epidemic model of the hepatitis C virus involving partial immunity under the influence of memory effect to know the transmission patterns and prevalence of HCV infection is studied. Investigating the transmission dynamics of HCV makes the issue more interesting. The HCV epidemic model and worldwide dynamics are examined in this study. Calculate the basic reproduction number for the HCV model using the next-generation matrix technique. We determine the model's global dynamics using reproduction numbers, the Lyapunov functional approach, and the Routh-Hurwitz criterion. The model's reproduction number shows how the disease progresses. METHODS: A fractional differential equation model of HCV infection has been created. Maximum relevant parameters, such as fractional power, HCV transmission rate, reproduction number, etc., influencing the dynamic process, have been incorporated. The model's numerical solutions are obtained using the fractional Adams method. Finally, numerical simulations support the theoretical conclusions, showing the great agreement between the two. RESULTS: In the fractional-order HCV infection model, the memory effect, which is not seen in the classical model, was shown on graphs so that disease dynamics and vector compartments could be seen. We found that the fractional-order HCV infection model has more stages of freedom than regular derivatives. Fractional-order derivations, which may be the best and most reliable, explained bodily approaches better than classical order. CONCLUSION: The current study modeled and analyzed a fractional-order HCV infection model. The current approach results in a much better understanding of HCV transmission in a population, which leads to important insights into its spread and control, such as better treatment dosage for different age groups, identifying the best control measure, improving health, prolonging life, reducing the risk of HCV transmission, and effectively increasing the quality of life of HCV patients. The creation of a fractional-order HCV infection model, which provides a better understanding of HCV transmission dynamics and leads to significant insights for better treatment dosages, identification of optimal control measures, and ultimately improvement of the quality of life for HCV patients, is the study's major outcome.


Subject(s)
Hepatitis C , Humans , Hepatitis C/transmission , Hepatitis C/epidemiology , Basic Reproduction Number/statistics & numerical data , Computer Simulation , Hepacivirus , Prevalence , Models, Theoretical , Algorithms
2.
Int J Dyn Control ; : 1-18, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37360279

ABSTRACT

The concept of a Caputo fractal-fractional derivative is a new class of non-integer order derivative with a power-law kernel that has many applications in real-life scenarios. This new derivative is applied newly to model the dynamics of diabetes mellitus disease because the operator can be applied to formulate some models which describe the dynamics with memory effects. Diabetes mellitus as one of the leading diseases of our century is a type of disease that is widely observed worldwide and takes the first place in the evolution of many fatal diseases. Diabetes is tagged as a chronic, metabolic disease signalized by elevated levels of blood glucose (or blood sugar), which results over time in serious damage to the heart, blood vessels, eyes, kidneys, and nerves in the body. The present study is devoted to mathematical modeling and analysis of the diabetes mellitus model without genetic factors in the sense of fractional-fractal derivative. At first, the critical points of the diabetes mellitus model are investigated; then Picard's theorem idea is applied to investigate the existence and uniqueness of the solutions of the model under the fractional-fractal operator. The resulting discretized system of fractal-fractional differential equations is integrated in time with the MATLAB inbuilt Ode45 and Ode15s packages. A step-by-step and easy-to-adapt MATLAB algorithm is also provided for scholars to reproduce. Simulation experiments that revealed the dynamic behavior of the model for different instances of fractal-fractional parameters in the sense of the Caputo operator are displayed in the table and figures. It was observed in the numerical experiments that a decrease in both fractal dimensions ζ and ϵ leads to an increase in the number of people living with diabetes mellitus.

3.
Healthc Anal (N Y) ; 3: 100157, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36941830

ABSTRACT

SARS COV-2 (Covid-19) has imposed a monumental socio-economic burden worldwide, and its impact still lingers. We propose a deterministic model to describe the transmission dynamics of Covid-19, emphasizing the effects of vaccination on the prevailing epidemic. The proposed model incorporates current information on Covid-19, such as reinfection, waning of immunity derived from the vaccine, and infectiousness of the pre-symptomatic individuals into the disease dynamics. Moreover, the model analysis reveals that it exhibits the phenomenon of backward bifurcation, thus suggesting that driving the model reproduction number below unity may not suffice to drive the epidemic toward extinction. The model is fitted to real-life data to estimate values for some of the unknown parameters. In addition, the model epidemic threshold and equilibria are determined while the criteria for the stability of each equilibrium solution are established using the Metzler approach. A sensitivity analysis of the model is performed based on the Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCCs) approaches to illustrate the impact of the various model parameters and explore the dependency of control reproduction number on its constituents parameters, which invariably gives insight on what needs to be done to contain the pandemic effectively. The foregoing notwithstanding, the contour plots of the control reproduction number concerning some of the salient parameters indicate that increasing vaccination coverage and decreasing vaccine waning rate would remarkably reduce the value of the reproduction number below unity, thus facilitating the possible elimination of the disease from the population. Finally, the model is solved numerically and simulated for different scenarios of disease outbreaks with the findings discussed.

5.
Entropy (Basel) ; 22(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-33286796

ABSTRACT

Chaotic dynamical systems are studied in this paper. In the models, integer order time derivatives are replaced with the Caputo fractional order counterparts. A Chebyshev spectral method is presented for the numerical approximation. In each of the systems considered, linear stability analysis is established. A range of chaotic behaviours are obtained at the instances of fractional power which show the evolution of the species in time and space.

6.
Chaos Solitons Fractals ; 138: 109826, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32572309

ABSTRACT

In this paper, a nonlinear fractional order epidemic model for HIV transmission is proposed and analyzed by including extra compartment namely exposed class to the basic SIR epidemic model. Also, the infected class of female sex workers is divided into unaware infectives and the aware infectives. The focus is on the spread of HIV by female sex workers through prostitution, because in the present world sexual transmission is the major cause of the HIV transmission. The exposed class contains those susceptible males in the population who have sexual contact with the female sex workers and are exposed to the infection directly or indirectly. The Caputo type fractional derivative is involved and generalized Adams-Bashforth-Moulton method is employed to numerically solve the proposed model. Model equilibria are determined and their stability analysis is considered by using fractional Routh-Hurwitz stability criterion and fractional La-Salle invariant principle. Analysis of the model demonstrates that the population is free from the disease if R 0 < 1 and disease spreads in the population if R 0 > 1 . Meanwhile, by using Lyapunov functional approach, the global dynamics of the endemic equilibrium point is discussed. Furthermore, for the fractional optimal control problem associated with the control strategies such as condom use for exposed class, treatment for aware infectives, awareness about disease among unaware infectives and behavioral change for susceptibles, we formulated a fractional optimality condition for the proposed model. The existence of fractional optimal control is analyzed and the Euler-Lagrange necessary conditions for the optimality of fractional optimal control are obtained. The effectiveness of control strategies is shown through numerical simulations and it can be seen through simulation, that the control measures effectively increase the quality of life and age limit of the HIV patients. It significantly reduces the number of HIV/AIDS patients during the whole epidemic.

7.
Chaos ; 29(2): 023111, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30823722

ABSTRACT

Mathematical analysis with the numerical simulation of the newly formulated fractional version of the Adams-Bashforth method using the Atangana-Baleanu operator which has both nonlocal and nonsingular properties is considered in this paper. We adopt the fixed point theory and approximation method to prove the existence and uniqueness of the solution via general two-component time fractional differential equations. The method is tested with three nonlinear chaotic dynamical systems in which the integer-order derivative is modeled with the proposed fractional-order case. The simulation result for different α values in (0,1] is presented.

8.
Chaos ; 29(1): 013145, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30709144

ABSTRACT

The aim of this paper is to apply the newly trending Atangana-Baluanu derivative operator to model some symbiosis systems describing commmensalism and predator-prey processes. The choice of using this derivative is due to the fact that it combines nonlocal and nonsingular properties in its formulation, which are the essential ingredients when dealing with models of real-life applications. In addition, it is only the Atangana-Baleanu derivative that has both Markovian and non-Markovian properties. Also, its waiting time takes into account the power, exponential, and Mittag-Leffler laws in its formulation. Mathematical analysis of these dynamical models is considered to guide in the correct use of parameters therein, with chaotic and spatiotemporal results reported for some instances of fractional power α.

9.
Chaos ; 29(1): 013120, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30709155

ABSTRACT

In this paper, we analyze the stability of the equilibrium point and Hopf bifurcation point in the three-component time-fractional differential equation, which describes the predator-prey interaction between different species. In the dynamics, the classical first-order derivative in time is modelled by either the Caputo or the Atangana-Baleanu fractional derivative of order α,0<α<1. We utilized a fractional version of the Adams-Bashforth formula to discretize these fractional derivatives in time. The results of the linear stability analysis presented are confirmed by computer simulation results.

10.
Springerplus ; 5(1): 1643, 2016.
Article in English | MEDLINE | ID: mdl-27722061

ABSTRACT

Evolution systems containing fractional derivatives can result to suitable mathematical models for describing better and important physical phenomena. In this paper, we consider a multi-components nonlinear fractional-in-space reaction-diffusion equations consisting of an improved deterministic model which describe the spread of hepatitis B virus disease in areas of high endemic communities. The model is analyzed. We give some useful biological results to show that the disease-free equilibrium is both locally and globally asymptotically stable when the basic reproduction number is less than unity. Our findings of this paper strongly recommend a combination of effective treatment and vaccination as a good control measure, is important to record the success of HBV disease control through a careful choice of parameters. Some simulation results are presented to support the analytical findings.

11.
Springerplus ; 5: 303, 2016.
Article in English | MEDLINE | ID: mdl-27064984

ABSTRACT

In this paper, we consider the numerical simulations of an extended nonlinear form of Kierstead-Slobodkin reaction-transport system in one and two dimensions. We employ the popular fourth-order exponential time differencing Runge-Kutta (ETDRK4) schemes proposed by Cox and Matthew (J Comput Phys 176:430-455, 2002), that was modified by Kassam and Trefethen (SIAM J Sci Comput 26:1214-1233, 2005), for the time integration of spatially discretized partial differential equations. We demonstrate the supremacy of ETDRK4 over the existing exponential time differencing integrators that are of standard approaches and provide timings and error comparison. Numerical results obtained in this paper have granted further insight to the question 'What is the minimal size of the spatial domain so that the population persists?' posed by Kierstead and Slobodkin (J Mar Res 12:141-147, 1953), with a conclusive remark that the population size increases with the size of the domain. In attempt to examine the biological wave phenomena of the solutions, we present the numerical results in both one- and two-dimensional space, which have interesting ecological implications. Initial data and parameter values were chosen to mimic some existing patterns.

12.
Theor Biol Med Model ; 13: 1, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26747444

ABSTRACT

BACKGROUND: The study of dynamic relationship between a multi-species models has gained a huge amount of scientific interest over the years and will continue to maintain its dominance in both ecology and mathematical ecology in the years to come due to its practical relevance and universal existence. Some of its emergence phenomena include spatiotemporal patterns, oscillating solutions, multiple steady states and spatial pattern formation. METHODS: Many time-dependent partial differential equations are found combining low-order nonlinear with higher-order linear terms. In attempt to obtain a reliable results of such problems, it is desirable to use higher-order methods in both space and time. Most computations heretofore are restricted to second order in time due to some difficulties introduced by the combination of stiffness and nonlinearity. Hence, the dynamics of a reaction-diffusion models considered in this paper permit the use of two classic mathematical ideas. As a result, we introduce higher order finite difference approximation for the spatial discretization, and advance the resulting system of ODE with a family of exponential time differencing schemes. We present the stability properties of these methods along with the extensive numerical simulations for a number of multi-species models. RESULTS: When the diffusivity is small many of the models considered in this paper are found to exhibit a form of localized spatiotemporal patterns. Such patterns are correctly captured in the local analysis of the model equations. An extended 2D results that are in agreement with Turing typical patterns such as stripes and spots, as well as irregular snakelike structures are presented. We finally show that the designed schemes are dynamically consistent. CONCLUSION: The dynamic complexities of some ecological models are studied by considering their linear stability analysis. Based on the choices of parameters in transforming the system into a dimensionless form, we were able to obtain a well-balanced system that is biologically meaningful. The accuracy and reliability of the schemes are justified via the computational results presented for each of the diffusive multi-species models.


Subject(s)
Ecology , Models, Statistical , Algorithms , Biodiversity , Computer Simulation , Nonlinear Dynamics , Population Dynamics , Reproducibility of Results , Species Specificity , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL