Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Hum Genomics ; 17(1): 83, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670378

ABSTRACT

BACKGROUND: RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY: Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION: Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.


Subject(s)
Down Syndrome , Female , Humans , Core Binding Factor Alpha 2 Subunit , Hematopoiesis , Chromosomes, Human, Pair 21 , Carcinogenesis
2.
Am J Physiol Heart Circ Physiol ; 322(5): H785-H797, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35302880

ABSTRACT

Pathological cardiac hypertrophy is associated with increased morbidity and mortality. Understanding the mechanisms whereby pathological cardiac growth can be reversed could be of therapeutic value. Here, we show that pathways leading to regression of pathological cardiac hypertrophy are strongly dependent on the hypertrophic trigger and are significantly modified by sex. Two pathological stimuli causing hypertrophy via distinct pathways were administered to male and female mice: angiotensin II (ANG II) or isoproterenol (Iso). Stimuli were removed after 7 days of treatment, and left ventricles (LVs) were studied at 1, 4, and 7 days. ANG II-treated females did not show regression after stimulus removal. Iso-treated males showed rapid LV hypertrophy regression. Somewhat surprisingly, RNAseq analysis at day 1 after removal of triggers revealed only 45 differentially regulated genes in common among all the groups, demonstrating distinct responses. Ingenuity pathway analysis predicted strong downregulation of the TGFß1 pathway in all groups except for ANG II-treated females. Consistently, we found significant downregulation of Smad signaling after stimulus removal including in ANG II-treated females. In addition, the ERK1/2 pathway was significantly reduced in the groups showing regression. Finally, protein degradation pathways were significantly activated only in Iso-treated males 1 day after stimulus removal. Our data indicate that TGFß1 downregulation may play a role in the regression of pathological cardiac hypertrophy via downregulation of the ERK1/2 pathway and activation of autophagy and proteasome activity in Iso-treated males. This work highlights that the reversal of pathological hypertrophy does not use universal signaling pathways and that sex potently modifies this process.NEW & NOTEWORTHY Pathological cardiac hypertrophy is a major risk factor for mortality and is thought to be largely irreversible in many individuals. Although cardiac hypertrophy itself has been studied extensively, very little is understood about its regression. It is important that we have a better understanding of mechanisms leading to regression, why this process is not reversible in some individuals and that sex differences need to be considered when contemplating therapies.


Subject(s)
Hypertrophy, Left Ventricular , Sex Characteristics , Angiotensin II/pharmacology , Animals , Female , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/metabolism , Isoproterenol/pharmacology , Male , Mice , Myocytes, Cardiac/metabolism , Sex Factors , Signal Transduction
3.
Water Res ; 204: 117613, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34500183

ABSTRACT

To assist in the COVID-19 public health guidance on a college campus, daily composite wastewater samples were withdrawn at 20 manhole locations across the University of Colorado Boulder campus. Low-cost autosamplers were fabricated in-house to enable an economical approach to this distributed study. These sample stations operated from August 25th until November 23rd during the fall 2020 semester, with 1512 samples collected. The concentration of SARS-CoV-2 in each sample was quantified through two comparative reverse transcription quantitative polymerase chain reactions (RT-qPCRs). These methods were distinct in the utilization of technical replicates and normalization to an endogenous control. (1) Higher temporal resolution compensates for supply chain or other constraints that prevent technical or biological replicates. (2) The data normalized by an endogenous control agreed with the raw concentration data, minimizing the utility of normalization. The raw wastewater concentration values reflected SARS-CoV-2 prevalence on campus as detected by clinical services. Overall, combining the low-cost composite sampler with a method that quantifies the SARS-CoV-2 signal within six hours enabled actionable and time-responsive data delivered to key stakeholders. With daily reporting of the findings, wastewater surveillance assisted in decision making during critical phases of the pandemic on campus, from detecting individual cases within populations ranging from 109 to 2048 individuals to monitoring the success of on-campus interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Universities , Wastewater
4.
J Infect Dis ; 224(8): 1316-1324, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34302469

ABSTRACT

BACKGROUND: The coronavirus disease 2019 pandemic spread to >200 countries in <6 months. To understand coronavirus spread, determining transmission rate and defining factors that increase transmission risk are essential. Most cases are asymptomatic, but people with asymptomatic infection have viral loads indistinguishable from those in symptomatic people, and they do transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, asymptomatic cases are often undetected. METHODS: Given high residence hall student density, the University of Colorado Boulder established a mandatory weekly screening test program. We analyzed longitudinal data from 6408 students and identified 116 likely transmission events in which a second roommate tested positive within 14 days of the index roommate. RESULTS: Although the infection rate was lower in single-occupancy rooms (10%) than in multiple-occupancy rooms (19%), interroommate transmission occurred only about 20% of the time. Cases were usually asymptomatic at the time of detection. Notably, individuals who likely transmitted had an average viral load approximately 6.5-fold higher than individuals who did not (mean quantification cycle [Cq], 26.2 vs 28.9). Although students with diagnosed SARS-CoV-2 infection moved to isolation rooms, there was no difference in time to isolation between cases with or without interroommate transmission. CONCLUSIONS: This analysis argues that interroommate transmission occurs infrequently in residence halls and provides strong correlative evidence that viral load is proportional to transmission probability.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/transmission , SARS-CoV-2/pathogenicity , Viral Load , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Humans , Pandemics/prevention & control , Pandemics/statistics & numerical data , SARS-CoV-2/isolation & purification , Students , Young Adult
5.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-33972412

ABSTRACT

We analyze data from the fall 2020 pandemic response efforts at the University of Colorado Boulder, where more than 72,500 saliva samples were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using qRT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified. The distribution of viral loads within these asymptomatic individuals was indistinguishable from what has been previously observed in symptomatic individuals. Regardless of symptomatic status, ∼50% of individuals who test positive for SARS-CoV-2 seem to be in noninfectious phases of the disease, based on having low viral loads in a range from which live virus has rarely been isolated. We find that, at any given time, just 2% of individuals carry 90% of the virions circulating within communities, serving as viral "supercarriers" and possibly also superspreaders.


Subject(s)
COVID-19/virology , Carrier State/virology , SARS-CoV-2 , Asymptomatic Infections/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , Carrier State/diagnosis , Carrier State/epidemiology , Carrier State/transmission , Colorado/epidemiology , Hospitalization/statistics & numerical data , Humans , Mass Screening/statistics & numerical data , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Universities , Viral Load , Virion
6.
J Am Heart Assoc ; 10(11): e018876, 2021 06.
Article in English | MEDLINE | ID: mdl-33998248

ABSTRACT

Background Biological sex is an important modifier of cardiovascular disease and women generally have better outcomes compared with men. However, the contribution of cardiac fibroblasts (CFs) to this sexual dimorphism is relatively unexplored. Methods and Results Isoproterenol (ISO) was administered to rats as a model for chronic ß-adrenergic receptor (ß-AR)-mediated cardiovascular disease. ISO-treated males had higher mortality than females and also developed fibrosis whereas females did not. Gonadectomy did not abrogate this sex difference. To determine the cellular contribution to this phenotype, CFs were studied. CFs from both sexes had increased proliferation in vivo in response to ISO, but CFs from female hearts proliferated more than male cells. In addition, male CFs were significantly more activated to myofibroblasts by ISO. To investigate potential regulatory mechanisms for the sexually dimorphic fibrotic response, ß-AR mRNA and PKA (protein kinase A) activity were measured. In response to ISO treatment, male CFs increased expression of ß1- and ß2-ARs, whereas expression of both receptors decreased in female CFs. Moreover, ISO-treated male CFs had higher PKA activity relative to vehicle controls, whereas ISO did not activate PKA in female CFs. Conclusions Chronic in vivo ß-AR stimulation causes fibrosis in male but not female rat hearts. Male CFs are more activated than female CFs, consistent with elevated fibrosis in male rat hearts and may be caused by higher ß-AR expression and PKA activation in male CFs. Taken together, our data suggest that CFs play a substantial role in mediating sex differences observed after cardiac injury.


Subject(s)
Fibroblasts/pathology , Heart Diseases/pathology , Isoproterenol/pharmacology , Myocardium/pathology , Receptors, Adrenergic, beta/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Disease Models, Animal , Disease Progression , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Heart Diseases/metabolism , Male , Myocardium/metabolism , Rats , Rats, Sprague-Dawley , Sex Factors
7.
Elife ; 102021 03 29.
Article in English | MEDLINE | ID: mdl-33779548

ABSTRACT

Here, we develop a simple molecular test for SARS-CoV-2 in saliva based on reverse transcription loop-mediated isothermal amplification. The test has two steps: (1) heat saliva with a stabilization solution and (2) detect virus by incubating with a primer/enzyme mix. After incubation, saliva samples containing the SARS-CoV-2 genome turn bright yellow. Because this test is pH dependent, it can react falsely to some naturally acidic saliva samples. We report unique saliva stabilization protocols that rendered 295 healthy saliva samples compatible with the test, producing zero false positives. We also evaluated the test on 278 saliva samples from individuals who were infected with SARS-CoV-2 but had no symptoms at the time of saliva collection, and from 54 matched pairs of saliva and anterior nasal samples from infected individuals. The Saliva TwoStep test described herein identified infections with 94% sensitivity and >99% specificity in individuals with sub-clinical (asymptomatic or pre-symptomatic) infections.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Carrier State/diagnosis , Carrier State/virology , SARS-CoV-2/isolation & purification , Saliva/virology , COVID-19/metabolism , COVID-19 Testing , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling/methods
8.
medRxiv ; 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33688663

ABSTRACT

We analyze data from the Fall 2020 pandemic response efforts at the University of Colorado Boulder (USA), where more than 72,500 saliva samples were tested for SARS-CoV-2 using quantitative RT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified. The distribution of viral loads within these asymptomatic individuals was indistinguishable from what has been previously reported in symptomatic individuals. Regardless of symptomatic status, approximately 50% of individuals who test positive for SARS-CoV-2 seem to be in non-infectious phases of the disease, based on having low viral loads in a range from which live virus has rarely been isolated. We find that, at any given time, just 2% of individuals carry 90% of the virions circulating within communities, serving as viral "super-carriers" and possibly also super-spreaders.

9.
medRxiv ; 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33619503

ABSTRACT

Here, we develop a simple molecular test for SARS-CoV-2 in saliva based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). The test has two steps: 1) heat saliva with a stabilization solution, and 2) detect virus by incubating with a primer/enzyme mix. After incubation, saliva samples containing the SARS-CoV-2 genome turn bright yellow. Because this test is pH dependent, it can react falsely to some naturally acidic saliva samples. We report unique saliva stabilization protocols that rendered 295 healthy saliva samples compatible with the test, producing zero false positives. We also evaluated the test on 278 saliva samples from individuals who were infected with SARS-CoV-2 but had no symptoms at the time of saliva collection, and from 54 matched pairs of saliva and anterior nasal samples from infected individuals. The Saliva TwoStep test described herein identified infections with 94% sensitivity and >99% specificity in individuals with sub-clinical (asymptomatic or pre-symptomatic) infections.

10.
J Am Heart Assoc ; 8(15): e013318, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31364453

ABSTRACT

Background In mammals, muscle contraction is controlled by a family of 10 sarcomeric myosin motors. The expression of one of its members, MYH7b, is regulated by alternative splicing, and while the protein is restricted to specialized muscles such as extraocular muscles or muscle spindles, RNA that cannot encode protein is expressed in most skeletal muscles and in the heart. Remarkably, birds and snakes express MYH7b protein in both heart and skeletal muscles. This observation suggests that in the mammalian heart, the motor activity of MYH7b may only be needed during development since its expression is prevented in adult tissue, possibly because it could promote disease by unbalancing myocardial contractility. Methods and Results We have analyzed MYH7b null mice to determine the potential role of MYH7b during cardiac development and also generated transgenic mice with cardiac myocyte expression of MYH7b protein to measure its impact on cardiomyocyte function and contractility. We found that MYH7b null mice are born at expected Mendelian ratios and do not have a baseline cardiac phenotype as adults. In contrast, transgenic cardiac MYH7b protein expression induced early cardiac dilation in males with significantly increased left ventricular mass in both sexes. Cardiac dilation is progressive, leading to early cardiac dysfunction in males, but later dysfunction in females. Conclusions The data presented show that the expression of MYH7b protein in the mammalian heart has been inhibited during the evolution of mammals most likely to prevent the development of a severe cardiomyopathy that is sexually dimorphic.


Subject(s)
Cardiomyopathy, Dilated/etiology , Myocardium/metabolism , Myosin Heavy Chains/biosynthesis , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...