ABSTRACT
Astrocytes perform multiple essential functions in the brain showing morphological changes. Hypertrophic astrocytes are commonly observed in cognitively healthy aged animals, implying a functional defense mechanism without losing neuronal support. In neurodegenerative diseases, astrocytes show morphological alterations, such as decreased process length and reduced number of branch points, known as astroglial atrophy, with detrimental effects on neuronal cells. The common marmoset (Callithrix jacchus) is a non-human primate that, with age, develops several features that resemble neurodegeneration. In this study, we characterize the morphological alterations in astrocytes of adolescent (mean 1.75 y), adult (mean 5.33 y), old (mean 11.25 y), and aged (mean 16.83 y) male marmosets. We observed a significantly reduced arborization in astrocytes of aged marmosets compared to younger animals in the hippocampus and entorhinal cortex. These astrocytes also show oxidative damage to RNA and increased nuclear plaques in the cortex and tau hyperphosphorylation (AT100). Astrocytes lacking S100A10 protein show a more severe atrophy and DNA fragmentation. Our results demonstrate the presence of atrophic astrocytes in the brains of aged marmosets.
Subject(s)
Astrocytes , Callithrix , Animals , Male , Callithrix/physiology , DNA Fragmentation , Astrocytes/metabolism , RNA/metabolism , Entorhinal Cortex , AtrophyABSTRACT
Currently, there is an increasing number of people with mild cognitive (MCI) impairment and dementia (D). In the present work we studied the role of tau protein, ß-amyloid, LPS (lipopolysaccharide), and curli protein of elderly adults with MCI or D and the contribution of gut microbiota. Four groups were studied: young subjects, healthy adults older than 60 years (A), elderly adults with MCI (MCI), and elderly adults with dementia (D). A preclinical study was conducted in old male Wistar rats to evaluate the impact of gut microbiota on curli protein abundance in feces and brain. The results showed that with increasing age, tau protein, ß-amyloid, and LPS significantly increased in serum during MCI and D, and this was associated with an increase in the abundance of E. coli that synthesize the amyloid protein curli, that may promote the aggregation of amyloid proteins. Rats showed a clear increase in the abundance of curli protein in the brain during aging. Thus, cognitive impairment and dementia are in part due to an alteration in the gut microbiota-brain axis via increase in curli protein and LPS leading to an increase in tau and ß-amyloid protein.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Gastrointestinal Microbiome , Male , Rats , Animals , Amyloid beta-Peptides/metabolism , Lipopolysaccharides , Escherichia coli/metabolism , Rats, Wistar , Aging , Brain/metabolism , FecesABSTRACT
The cellular prion protein (PrPC) is a metal-binding biomolecule that can interact with different protein partners involved in pivotal physiological processes, such as neurogenesis and neuronal plasticity. Recent studies profile copper and PrPC as important players in the pathological mechanisms of Alzheimer's disease and cancer. Although the copper-PrPC interaction has been characterized extensively, the role of the metal ion in the physiological and pathological roles of PrPC has been barely explored. In this article, we discuss how copper binding and proteolytic processing may impact the ability of PrPC to recruit protein partners for its functional roles. The importance to dissect the role of copper-PrPC interactions in health and disease is also underscored.
Subject(s)
Alzheimer Disease , Neoplasms , Chemistry, Bioinorganic , Copper/metabolism , Humans , Prion Proteins/chemistryABSTRACT
Coronavirus disease 2019 (COVID-19) is a disease produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it is currently causing a catastrophic pandemic affecting humans worldwide. This disease has been lethal for approximately 3.12 million people around the world since January 2020. Globally, among the most affected countries, Mexico ranks third in deaths after the United States of America and Brazil. Although the high number of deceased people might also be explained by social aspects and lifestyle customs in Mexico, there is a relationship between this high proportion of deaths and comorbidities such as high blood pressure (HBP), type 2 diabetes, obesity, and metabolic syndrome. The official epidemiological figures reported by the Mexican government have indicated that 18.4% of the population suffers from HBP, close to 10.3% of adults suffer from type 2 diabetes, and approximately 36.1% of the population suffers from obesity. Disbalances in the gut microbiota (GM) have been associated with these diseases and with COVID-19 severity, presumably due to inflammatory dysfunction. Recent data about the association between GM dysbiosis and metabolic diseases could suggest that the high levels of susceptibility to SARS-CoV-2 infection and COVID-19 morbidity in the Mexican population are primarily due to the prevalence of type 2 diabetes, obesity, and metabolic syndrome.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Adult , Diabetes Mellitus, Type 2/epidemiology , Humans , Obesity/epidemiology , SARS-CoV-2ABSTRACT
BACKGROUND: Normal aging is accompanied by cognitive deficiencies, affecting women and men equally. Aging is the main risk factor for Alzheimer's disease (AD), with women having a higher risk. The higher prevalence of AD in women is associated with the abrupt hormonal decline seen after menopause. However, other factors may be involved in this sex-related cognitive decline. Alterations in gut microbiota (GM) and its bioproducts have been reported in AD subjects and transgenic (Tg) mice, having a direct impact on brain amyloid-ß pathology in male (M), but not in female (F) mice. OBJECTIVE: The aim of this work was to determine GM composition and cognitive dysfunction in M and F wildtype (WT) and Tg mice, in a sex/genotype segregation design. METHODS: Anxiety, short term working-memory, spatial learning, and long-term spatial memory were evaluated in 6-month-old WT and Tg male mice. Fecal short chain fatty acids were determined by chromatography, and DNA sequencing and bioinformatic analyses were used to determine GM differences. RESULTS: We observed sex-dependent differences in cognitive skills in WT mice, favoring F mice. However, the cognitive advantage of females was lost in Tg mice. GM composition showed few sex-related differences in WT mice. Contrary, Tg-M mice presented a more severe dysbiosis than Tg-F mice. A decreased abundance of Ruminococcaceae was associated with cognitive deficits in Tg-F mice, while butyrate levels were positively associated with better working- and object recognition-memory in WT-F mice. CONCLUSION: This report describes a sex-dependent association between GM alterations and cognitive impairment in a mice model of AD.
Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Gastrointestinal Microbiome/physiology , Sex Characteristics , Alzheimer Disease/psychology , Animals , Cognitive Dysfunction/psychology , Female , Humans , Male , Mice , Mice, Transgenic , Spatial Memory/physiologyABSTRACT
Obesity is associated with cognitive deficit and liver alterations; however, it remains unclear whether a combination of functional foods could reverse cognitive damage and to what extent it would be associated with changes in gut microbiota and liver. With this aim, male Wistar rats were fed a high-fat-5%sucrose diet (HFS) for 4 mo. And were then fed for 1 mo. with bioactive foods. At the end of this period, liver, serum, feces, intestine, and brain samples were taken. Body composition, energy expenditure, LPS, hormones, intraperitoneal glucose tolerance test, behavioral tests, and gut microbiota were evaluated. We showed that male rats fed high-fat-sucrose diet developed gut microbiota dysbiosis, increased in body fat, decreased antioxidant activity, decreased brain neuropeptide Y, increased the number of astrocytes and activated microglia, along with reduced spine density associated with deficits in working memory. Ingestion of a combination of nopal, soy protein, curcumin, and chia seed oil (bioactive foods) for three months was associated with an increase in a cluster of bacteria with anti-inflammatory capacity, a decrease in serum LPS levels and an increase in serum eicosapentaenoic acid (EPA) with neuroprotective properties. In the liver, ingestion of bioactive food significantly increased antioxidant enzymes, decreased lipogenesis, reduced inflammation mediated by the TLR4-TNFα pathway along with a decrease in body fat, glucose intolerance, and metabolic inflexibility. Finally, neuroinflammation in the brain was reduced and working memory improved. Our study demonstrates that consumption of bioactive foods was associated with reduced liver, brain, and gut microbiota alterations in obese rats.
Subject(s)
Brain/metabolism , Diet, High-Fat/adverse effects , Dietary Sucrose/administration & dosage , Dietary Sucrose/adverse effects , Food/classification , Liver/metabolism , Animals , Antioxidants , Bacteria/drug effects , Bacteria/genetics , Body Composition , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Glucose Intolerance , Insulin Resistance , Male , Occludin/genetics , Occludin/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Aging is a major risk factor for the development of neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases are characterized by abnormal and prominent protein aggregation in the brain, partially due to deficiency in protein clearance. It has been proposed that alterations in microglia phagocytosis and debris clearance hasten the onset of neurodegeneration. Dystrophic microglia are abundant in aged humans, and it has been associated with the onset of disease. Furthermore, alterations in microglia containing ferritin are associated with neurodegenerative conditions. To further understand the process of microglia dysfunction during the aging process, we used hippocampal sections from Tupaia belangeri (tree shrews). Adult (mean age 3.8 years), old (mean age 6 years), and aged (mean age 7.5 years) tree shrews were used for histochemical and immunostaining techniques to determine ferritin and Iba1 positive microglia, iron tissue content, tau hyperphosphorylation and oxidized-RNA in dentate gyrus, subiculum, and CA1-CA3 hippocampal regions. Our results indicated that aged tree shrews presented an increased number of activated microglia containing ferritin, but microglia labeled with Iba1 with a dystrophic phenotype was more abundant in aged individuals. With aging, oxidative damage to RNA (8OHG) increased significantly in all hippocampal regions, while tau hyperphosphorylation (AT100) was enhanced in DG, CA3, and SUB in aged animals. Phagocytic inclusions of 8OHG- and AT100-damaged cells were observed in activated M2 microglia in old and aged animals. These data indicate that aged tree shrew may be a suitable model for translational research to study brain and microglia alterations during the aging process.
Subject(s)
Microglia , Tupaia , Animals , Child , Child, Preschool , Ferritins , Hippocampus , Humans , Oxidative Stress , RNA , TupaiidaeABSTRACT
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
ABSTRACT
Microglia are cells that protect brain tissue from invading agents and toxic substances, first by releasing pro-inflammatory cytokines, and thereafter by clearing tissue by phagocytosis. Microglia express ferritin, a protein with ferroxidase activity capable of storing iron, a metal that accumulates in brain during aging. Increasing evidence suggests that ferritin plays an important role in inflammation. However, it is not known if ferritin/iron content can be related to the activation state of microglia. To this end, we aimed to delineate the role of ferritin in microglia activation in a non-human primate model. We analyzed brains of male marmosets and observed an increased density of ferritin+ microglia with an activated phenotype in hippocampus and cortex of old marmosets (mean age 11.25 ± 0.70 years) compared to younger subjects. This was accompanied by an increased number of dystrophic microglia in old marmosets. However, in aged subjects (mean age 16.83 ± 2.59 years) the number of ferritin+ microglia was decreased compared to old ones. Meanwhile, the content of iron in brain tissue and cells with oxidized RNA increased during aging in all hippocampal and cortical regions analyzed. Abundant amoeboid microglia were commonly observed surrounding neurons with oxidized RNA. Notably, amoeboid microglia were arginase1+ and IL-10+, indicative of a M2 phenotype. Some of those M2 cells also presented RNA oxidation and a dystrophic phenotype. Therefore, our data suggest that ferritin confers protection to microglia in adult and old marmosets, while in aged subjects the decline in ferritin and the increased amount of iron in brain tissue may be related to the increased number of cells with oxidized RNA, perhaps precluding the onset of neurodegeneration.
Subject(s)
Aging , Callithrix/physiology , Ferritins/metabolism , Iron/metabolism , Microglia/pathology , Animals , Cerebral Cortex/pathology , Hippocampus/cytology , Hippocampus/pathology , Male , Microglia/chemistry , RNA/chemistryABSTRACT
Recent investigations have demonstrated an important role of gut microbiota (GM) in the pathogenesis of Alzheimer's disease (AD). GM modulates a host's health and disease by production of several substances, including lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), among others. Diet can modify the composition and diversity of GM, and ingestion of a healthy diet has been suggested to lower the risk to develop AD. We have previously shown that bioactive food (BF) ingestion can abate neuroinflammation and oxidative stress and improve cognition in obese rats, effects associated with GM composition. Therefore, BF can impact the gut-brain axis and improved behavior. In this study, we aim to explore if inclusion of BF in the diet may impact central pathological markers of AD by modulation of the GM. Triple transgenic 3xTg-AD (TG) female mice were fed a combination of dried nopal, soy, chia oil, and turmeric for 7 months. We found that BF ingestion improved cognition and reduced Aß aggregates and tau hyperphosphorylation. In addition, BF decreased MDA levels, astrocyte and microglial activation, PSD-95, synaptophysin, GluR1 and ARC protein levels in TG mice. Furthermore, TG mice fed BF showed increased levels of pGSK-3ß. GM analysis revealed that pro-inflammatory bacteria were more abundant in TG mice compared to wild-type, while BF ingestion was able to restore the GM's composition, LPS, and propionate levels to control values. Therefore, the neuroprotective effects of BF may be mediated, in part, by modulation of GM and the release of neurotoxic substances that alter brain function.
Subject(s)
Alzheimer Disease/metabolism , Diet , Food , Gastrointestinal Microbiome/physiology , Synapses/metabolism , Alzheimer Disease/microbiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Mice , Mice, Transgenic , Neuroprotective Agents/pharmacology , Phosphorylation , Synapses/pathology , tau Proteins/metabolismABSTRACT
Current efforts are directed to reducing the gut dysbiosis and inflammation produced by obesity. The purpose of this study was to investigate whether consuming nopal, a vegetable rich in dietary fibre, vitamin C, and polyphenols can reduce the metabolic consequences of obesity by modifying the gut microbiota and preventing metabolic endotoxemia in rats fed a high fat and sucrose diet. With this aim, rats were fed a high fat diet with 5% sucrose in the drinking water (HFS) for 7 months and then were fed for 1 month with HFS + 5% nopal (HFS + N). The composition of gut microbiota was assessed by sequencing the 16S rRNA gene. Nopal modified gut microbiota and increased intestinal occludin-1 in the HFS + N group. This was associated with a decrease in metabolic endotoxemia, glucose insulinotropic peptide, glucose intolerance, lipogenesis, and metabolic inflexibility. These changes were accompanied by reduced hepatic steatosis and oxidative stress in adipose tissue and brain, and improved cognitive function, associated with an increase in B. fragilis. This study supports the use of nopal as a functional food and prebiotic for its ability to modify gut microbiota and to reduce metabolic endotoxemia and other obesity-related biochemical abnormalities.
Subject(s)
Diet, High-Fat/adverse effects , Endotoxemia/prevention & control , Gastrointestinal Microbiome/drug effects , Obesity/metabolism , Opuntia/chemistry , Plant Preparations/administration & dosage , Sucrose/adverse effects , Animals , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Endotoxemia/chemically induced , Insulin Receptor Substrate Proteins/metabolism , Liver/metabolism , Male , Plant Preparations/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Ribosomal, 16S/genetics , Rats , Sequence Analysis, DNA/methodsABSTRACT
Metabolic syndrome (MS) is a serious public health problem, which can promote neuronal alterations in cognitive regions related to learning and memory processes, such as the hippocampus. However, up to now there has been information of a regional segregation of this damage. In this study, we evaluate the MS effect on the neuronal morphology of the hippocampus. Our results demonstrate that 90days of a high-calorie diet alters the metabolic energy markers causing the MS and causes memory impairments, evaluated by the recognition of novel objects test (NORT). In addition, MS animals showed significant differences in dendritic order, total dendritic length and density of dendritic spines in CA1, CA3 and the dentate gyrus (DG) of the hippocampal area, compared with rats fed with a normocaloric diet (vehicle group). Furthermore, the immunoreactivity to synaptophysin (Syp) decreased in the hippocampus of the MS animals compared to the vehicle group. These results indicate that metabolic alterations induced by the MS affect hippocampal plasticity and hippocampal dependent memory processes.
Subject(s)
Hippocampus/metabolism , Memory Disorders/metabolism , Metabolic Syndrome/metabolism , Neuronal Plasticity/physiology , Recognition, Psychology/physiology , Animals , Exploratory Behavior/physiology , Hippocampus/pathology , Male , Memory Disorders/pathology , Memory Disorders/psychology , Metabolic Syndrome/pathology , Metabolic Syndrome/psychology , Rats , Rats, WistarABSTRACT
[This corrects the article on p. 315 in vol. 8, PMID: 28066237.].
ABSTRACT
SCOPE: There is few information about the possible health effects of a food combination based on a pre-hispanic Mexican diet (PMD). This diet rich in fiber, polyphenols, a healthy ratio of omega 6/omega 3 fatty acids, and vegetable protein could improve carbohydrate and lipid metabolism, gut microbiota and cognitive function. METHODS AND RESULTS: We examined the effect of a PMD in a sucrose enriched high-fat model. The PMD contains corn, beans, tomato, nopal, chia and pumpkin seeds in dehydrated form. Following induction of obesity, rats were fed PMD. PMD consumption decreased glucose intolerance, body weight gain, serum and liver triglycerides and leptin. In addition, PMD decreased the size of the adipocytes, and increased the protein abundance of UCP-1, PPAR-α, PGC1-α and Tbx-1 in white adipose tissue. Finally, the PMD significant decreased hepatic levels of ROS, oxidized proteins and GSSG/GSH ratio and an increase in the relative abundance of Bifidobacteria and the improvement of cognitive function. CONCLUSION: Consumption of a PMD decreased the glucose intolerance and the biochemical abnormalities caused by the obesity by increasing the abundance of proteins involved in fatty acid oxidation, decreasing the oxidative stress and modifying the gut microbiota.
Subject(s)
Cognition/drug effects , Diet, High-Fat/adverse effects , Diet , Gastrointestinal Microbiome/drug effects , Obesity/diet therapy , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Antioxidants/analysis , Fatty Acids/analysis , Gene Expression Regulation/drug effects , Liver/drug effects , Liver/physiology , Solanum lycopersicum , Mexico , Obesity/metabolism , Obesity/microbiology , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Sucrose/adverse effects , Zea maysABSTRACT
Common marmosets (Callithrix jacchus) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aß)1-42 and Aß1-40. However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aß1-40 and Aß1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer's disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration.
ABSTRACT
Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.
Subject(s)
Epilepsy/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Epilepsy/drug therapy , Humans , Molecular Targeted Therapy/methods , NF-E2-Related Factor 2/chemistry , Oxidative Stress , Signal TransductionABSTRACT
Oxidative stress, which is a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with diseases that are systemic as well as diseases that affect the central nervous system. Epilepsy is a chronic neurological disorder, and temporal lobe epilepsy represents an estimated 40% of all epilepsy cases. Currently, evidence from human and experimental models supports the involvement of oxidative stress during seizures and in the epileptogenesis process. Hence, the aim of this review was to provide information that facilitates the processing of this evidence and investigate the therapeutic impact of the biochemical status for this specific pathology.