Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 313: 137494, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36513198

ABSTRACT

Bioplastics made of renewable sources provide an excellent alternative to fossil-based materials. However, similar or greater quantities of plastic additives than fossil-based plastics are used in the formulations of bioplastics to improve their performance and barrier properties. Nowadays, there is an increasing concern about sources of chemical exposure. However, there is an important knowledge gap regarding complex additive mixtures, particularly in bio-based materials. In this study, we have characterised the presence of plastic additives in single-use materials (collected from retail shops in Spain), which are made of the most common bio-based biodegradable materials, poly(lactic acid) (PLA) and poly(hydroxybutyrate) (PHB), in contrast with a fossil-based plastic material that is extensively made from high-density polyethylene (HDPE). The approach consisted of the pulverization of material in the nano-micro range (100 nm-10 µm), with the materials being extracted using different solvents and ultrasonic-assisted solvent extraction (UASE). 100% of the additives in the material cannot be extracted, but since they were performed in the same condition for all materials can inform about the fingerprint of primary organics and the relative abundances between the different materials. The extracts were analysed by high-performance liquid chromatography coupled with high-resolution mass spectrometry equipped with a heated electrospray ionisation source operated in positive and negative ionisation conditions (HPLC-HESI(+/-)-HRMS), separately, using a suspect screening approach. A total number of 203 additives were tentatively identified (confidence level 2) in the bioplastics items of this study. An average of 123 plastic additives were found in PLA items and 121 in PHB items. Plasticisers were the most abundant additives; the phthalates group was the most commonly found, while 63 plastic additives were confirmed by standards and quantified. In parallel, the cytotoxicity of plastic particles in terms of cell viability and oxidative stress was studied using A549 alveolar basal epithelial cells, and the toxicity of the different extracts was also established using HepG2 adenocarcinoma cells. The main results of this study demonstrate that the plastic particles did not show a significant reduction in cell viability, but oxidative stress was significant, with PLA being the material that showed the highest effect. On the other hand, extracts of plastic particles did not show inhibition of cell viability except for HDPE extract, but the different extracts produced oxidative stress, with PLA showing the highest effect. Although the item showing the highest concentrations of additives was the extract of PLA material while also showing the most elevated oxidative stress, the low migration of toxicants from plastic materials ensures their safe use. However, this also supports the idea that bioplastics can contain many toxic substances in their formulations, some of which are unknown and should be studied in more depth.


Subject(s)
Plastics , Polyethylene , Plastics/toxicity , Polyesters/toxicity , Biopolymers , Spain
2.
Pharmaceutics ; 12(6)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486415

ABSTRACT

The effective use of fusion inhibitor peptides against cervical and colorectal infections requires the development of sustained release formulations. In this work we comparatively study two different formulations based on polymeric nanoparticles and lipid vesicles to propose a suitable delivery nanosystem for releasing an HIV-1 fusion inhibitor peptide in vaginal mucosa. Polymeric nanoparticles of poly-d,l-lactic-co-glycolic acid (PLGA) and lipid large unilamellar vesicles loaded with the inhibitor peptide were prepared. Both formulations showed average sizes and polydispersity index values corresponding to monodisperse systems appropriate for vaginal permeation. High entrapment efficiency of the inhibitor peptide was achieved in lipid vesicles, which was probably due to the peptide's hydrophobic nature. In addition, both nanocarriers remained stable after two weeks stored at 4 °C. While PLGA nanoparticles (NPs) did not show any delay in peptide release, lipid vesicles demonstrated favorably prolonged release of the peptide. Lipid vesicles were shown to improve the retention of the peptide on ex vivo vaginal tissue in a concentration sufficient to exert its pharmacological effect. Thus, the small size of lipid vesicles, their lipid-based composition as well as their ability to enhance peptide penetration on vaginal tissue led us to consider this formulation as a better nanosystem than polymeric nanoparticles for the sustained delivery of the HIV-1 fusion inhibitor peptide in vaginal tissues.

3.
Mol Pharm ; 15(11): 5005-5018, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30226777

ABSTRACT

New therapeutic alternatives to fight against the spread of HIV-1 are based on peptides designed to inhibit the early steps of HIV-1 fusion in target cells. However, drawbacks, such as bioavailability, short half-life, rapid clearance, and poor ability to cross the physiological barriers, make such peptides unattractive for the pharmaceutical industry. Here we developed, optimized, and characterized polymeric nanoparticles (NPs) coated with glycol chitosan to incorporate and release an HIV-1 fusion inhibitor peptide (E1) inside the vaginal mucosa. The NPs were prepared by a modified double emulsion method, and optimization was carried out by a factorial design. In vitro, ex vivo, and in vivo studies were carried out to evaluate the optimized formulation. The results indicate that the physicochemical features of these NPs enable them to incorporate and release HIV fusion inhibitor peptides to the vaginal mucosa before the fusion step takes place.


Subject(s)
Drug Carriers/chemistry , HIV-1/drug effects , Peptides/administration & dosage , Viral Fusion Protein Inhibitors/administration & dosage , Administration, Intravaginal , Animals , Chitosan/chemistry , Drug Design , Female , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Models, Animal , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Mucous Membrane/virology , Nanoparticles/chemistry , Particle Size , Peptides/chemistry , Peptides/pharmacokinetics , Swine , Vagina/drug effects , Vagina/metabolism , Vagina/virology , Viral Envelope Proteins/chemistry , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacokinetics , Virus Internalization/drug effects
4.
Environ Res ; 159: 579-587, 2017 11.
Article in English | MEDLINE | ID: mdl-28898803

ABSTRACT

Plastic wastes are among the major inputs of detritus into aquatic ecosystems. Also, during recent years the increasing use of new materials such as nanomaterials (NMs) in industrial and household applications has contributed to the complexity of waste mixtures in aquatic systems. The current effects and the synergism and antagonisms of mixtures of microplastics (MPLs), NMs and organic compounds on the environment and in human health have, to date, not been well understood but instead they are a cause for general concern. The aim of this work is to contribute to a better understanding of the cytotoxicity of NMs and microplastics/nanoplastics (MPLs/NPLs), at cell level in terms of oxidative stress (evaluating Reactive Oxygen Species effect) and cell viability. Firstly, the individual cytotoxicity of metal nanoparticles (NPs) (AgNPs and AuNPs), of metal oxide NPs (ZrO2NPs, CeO2NPs, TiO2NPs, and Al2O3NPs), carbon nanomaterials (C60fullerene, graphene), and MPLs of polyethylene (PE) and polystyrene (PS) has been evaluated in vitro. Two different cellular lines T98G and HeLa, cerebral and epithelial human cells, respectively, were employed. The cells were exposed during 24-48h to different levels of contaminants, from 10ng/mL to 10µg/mL, under the same conditions. Secondly, the synergistic and antagonistic relationships between fullerenes and other organic contaminants, including an organophosphate insecticide (malathion), a surfactant (sodium dodecylbenzenesulfonate) and a plasticiser (diethyl phthalate) were assessed. The obtained results confirm that oxidative stress is one of the mechanisms of cytotoxicity at cell level, as has been observed for both cell lines and contributes to the current knowledge of the effects of NMs and MPLs-NPLs.


Subject(s)
Cytotoxins/toxicity , Environmental Pollutants/toxicity , Nanostructures/toxicity , Oxidative Stress/drug effects , Plastics/toxicity , Cell Line , Cell Survival/drug effects , HeLa Cells , Humans
5.
Nanomedicine ; 13(2): 601-609, 2017 02.
Article in English | MEDLINE | ID: mdl-27565689

ABSTRACT

The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics.


Subject(s)
HIV Envelope Protein gp41 , HIV Infections/drug therapy , HIV-1 , Liposomes , Peptides , Amino Acid Sequence , Humans , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...