Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891917

ABSTRACT

The European "Green Deal" policies are shifting toward more sustainable and environmentally conscious agricultural practices, reducing the use of chemical fertilizer and pesticides. This implies exploring alternative strategies. One promising alternative to improve plant nutrition and reinforce plant defenses is the use of beneficial microorganisms in the rhizosphere, such as "Plant-growth-promoting rhizobacteria and fungi". Despite the great abundance of iron (Fe) in the Earth's crust, its poor solubility in calcareous soil makes Fe deficiency a major agricultural issue worldwide. Among plant promoting microorganisms, the yeast Debaryomyces hansenii has been very recently incorporated, for its ability to induce morphological and physiological key responses to Fe deficiency in plants, under hydroponic culture conditions. The present work takes it a step further and explores the potential of D. hansenii to improve plant nutrition and stimulate growth in cucumber plants grown in calcareous soil, where ferric chlorosis is common. Additionally, the study examines D. hansenii's ability to induce systemic resistance (ISR) through a comparative relative expression study by qRT-PCR of ethylene (ET) biosynthesis (ACO1), or ET signaling (EIN2 and EIN3), and salicylic acid (SA) biosynthesis (PAL)-related genes. The results mark a significant milestone since D. hansenii not only enhances nutrient uptake and stimulates plant growth and flower development but could also amplify induced systemic resistance (ISR). Although there is still much work ahead, these findings make D. hansenii a promising candidate to be used for sustainable and environmentally friendly integrated crop management.


Subject(s)
Crop Production , Fertilizers , Crop Production/methods , Iron/metabolism , Cucumis sativus/microbiology , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Iron Deficiencies , Gene Expression Regulation, Plant , Debaryomyces/metabolism , Rhizosphere , Ethylenes/metabolism , Soil Microbiology , Salicylic Acid/metabolism
2.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687390

ABSTRACT

Rice (Oryza sativa L.) is a very important cereal worldwide, since it is the staple food for more than half of the world's population. Iron (Fe) deficiency is among the most important agronomical concerns in calcareous soils where rice plants may suffer from this deficiency. Current production systems are based on the use of high-yielding varieties and the application of large quantities of agrochemicals, which can cause major environmental problems. The use of beneficial rhizosphere microorganisms is considered a relevant sustainable alternative to synthetic fertilizers. The main goal of this study was to determine the ability of the nonpathogenic strain Fusarium oxysporum FO12 to induce Fe-deficiency responses in rice plants and its effects on plant growth and Fe chlorosis. Experiments were carried out under hydroponic system conditions. Our results show that the root inoculation of rice plants with FO12 promotes the production of phytosiderophores and plant growth while reducing Fe chlorosis symptoms after several days of cultivation. Moreover, Fe-related genes are upregulated by FO12 at certain times in inoculated plants regardless of Fe conditions. This microorganism also colonizes root cortical tissues. In conclusion, FO12 enhances Fe-deficiency responses in rice plants, achieves growth promotion, and reduces Fe chlorosis symptoms.

3.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628796

ABSTRACT

Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these responses is not totally known, but some hormones and signaling molecules, such as auxin, ethylene, glutathione (GSH), nitric oxide (NO) and S-nitrosoglutathione (GSNO), have been involved in their activation. Most of these substances, including auxin, ethylene, GSH and NO, increase their production in Fe-deficient roots while GSNO, derived from GSH and NO, decreases its content. This paradoxical result could be explained with the increased expression and activity in Fe-deficient roots of the GSNO reductase (GSNOR) enzyme, which decomposes GSNO to oxidized glutathione (GSSG) and NH3. The fact that NO content increases while GSNO decreases in Fe-deficient roots suggests that NO and GSNO do not play the same role in the regulation of Fe deficiency responses. This review is an update of the results supporting a role for NO, GSNO and GSNOR in the regulation of Fe deficiency responses. The possible roles of NO and GSNO are discussed by taking into account their mode of action through post-translational modifications, such as S-nitrosylation, and through their interactions with the hormones auxin and ethylene, directly related to the activation of morphological and physiological responses to Fe deficiency in dicot plants.


Subject(s)
Glutathione , Nitric Oxide , Glutathione Disulfide , Ethylenes , Indoleacetic Acids , Soil
5.
Planta ; 257(3): 50, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36757472

ABSTRACT

MAIN CONCLUSION: FO12 strain enhances Fe deficiency responses in cucumber plants, probably through the production of ethylene and NO in the subapical regions of the roots. Rhizosphere microorganisms can elicit induced systemic resistance (ISR) in plants. This type of resistance involves complex mechanisms that confer protection to the plant against pathogen attack. Additionally, it has been reported by several studies that ISR and Fe deficiency responses are modulated by common pathways, involving some phytohormones and signaling molecules, like ethylene and nitric oxide (NO). The aim of this study was to determine whether the nonpathogenic strain of Fusarium oxysporum FO12 can induce Fe deficiency responses in cucumber (Cucumis sativus L.) plants. Our results demonstrate that the root inoculation of cucumber plants with the FO12 strain promotes plant growth after several days of cultivation, as well as rhizosphere acidification and enhancement of ferric reductase activity. Moreover, Fe-related genes, such as FRO1, IRT1 and HA1, are upregulated at certain times after FO12 inoculation either upon Fe-deficiency or Fe-sufficient conditions. Furthermore, it has been found that this fungus colonizes root cortical tissues, promoting the upregulation of ethylene synthesis genes and NO production in the root subapical regions. To better understand the effects of the FO12 strain on field conditions, cucumber plants were inoculated and cultivated in a calcareous soil under greenhouse conditions. The results obtained show a modification of some physiological parameters in the inoculated plants, such as flowering and reduction of tissue necrosis. Overall, the results suggest that the FO12 strain could have a great potential as a Fe biofertilizer and biostimulant.


Subject(s)
Cucumis sativus , Fusarium , Cucumis sativus/genetics , Plant Roots/metabolism , Iron/metabolism , Ethylenes/metabolism
6.
Front Plant Sci ; 13: 971773, 2022.
Article in English | MEDLINE | ID: mdl-36105702

ABSTRACT

When plants suffer from Fe deficiency, they develop morphological and physiological responses, mainly in their roots, aimed to facilitate Fe mobilization and uptake. Once Fe has been acquired in sufficient quantity, the responses need to be switched off to avoid Fe toxicity and to conserve energy. Several hormones and signaling molecules, such as ethylene, auxin and nitric oxide, have been involved in the activation of Fe deficiency responses in Strategy I plants. These hormones and signaling molecules have almost no effect when applied to plants grown under Fe-sufficient conditions, which suggests the existence of a repressive signal related to the internal Fe content. The nature of this repressive signal is not known yet many experimental results suggest that is not related to the whole root Fe content but to some kind of Fe compound moving from leaves to roots through the phloem. After that, this signal has been named LOng-Distance Iron Signal (LODIS). Very recently, a novel family of small peptides, "IRON MAN" (IMA), has been identified as key components of the induction of Fe deficiency responses. However, the relationship between LODIS and IMA peptides is not known. The main objective of this work has been to clarify the relationship between both signals. For this, we have used Arabidopsis wild type (WT) Columbia and two of its mutants, opt3 and frd3, affected, either directly or indirectly, in the transport of Fe (LODIS) through the phloem. Both mutants present constitutive activation of Fe acquisition genes when grown in a Fe-sufficient medium despite the high accumulation of Fe in their roots. Arabidopsis WT Columbia plants and both mutants were treated with foliar application of Fe, and later on the expression of IMA and Fe acquisition genes was analyzed. The results obtained suggest that LODIS may act upstream of IMA peptides in the regulation of Fe deficiency responses in roots. The possible regulation of IMA peptides by ethylene has also been studied. Results obtained with ethylene precursors and inhibitors, and occurrence of ethylene-responsive cis-acting elements in the promoters of IMA genes, suggest that IMA peptides could also be regulated by ethylene.

7.
Front Plant Sci ; 13: 968665, 2022.
Article in English | MEDLINE | ID: mdl-36035680

ABSTRACT

To cope with nutrient scarcity, plants generally follow two main complementary strategies. On the one hand, they can slow down growing, mainly shoot growth, to diminish the demand of nutrients. We can call this strategy as "stop growing." On the other hand, plants can develop different physiological and morphological responses, mainly in their roots, aimed to facilitate the acquisition of nutrients. We can call this second strategy as "searching for nutrients." Both strategies are compatible and can function simultaneously but the interconnection between them is not yet well-known. In relation to the "stop growing" strategy, it is known that the TOR (Target Of Rapamycin) system is a central regulator of growth in response to nutrients in eukaryotic cells. TOR is a protein complex with kinase activity that promotes protein synthesis and growth while some SnRK (Sucrose non-fermenting 1-Related protein Kinases) and GCN (General Control Non-derepressible) kinases act antagonistically. It is also known that some SnRKs and GCNs are activated by nutrient deficiencies while TOR is active under nutrient sufficiency. In relation to the "searching for nutrients" strategy, it is known that the plant hormone ethylene participates in the activation of many nutrient deficiency responses. In this Mini Review, we discuss the possible role of ethylene as the hub connecting the "stop growing" strategy and the "searching for nutrients" strategy since very recent results also suggest a clear relationship of ethylene with the TOR system.

9.
Front Plant Sci ; 12: 643585, 2021.
Article in English | MEDLINE | ID: mdl-33859661

ABSTRACT

To cope with P, S, or Fe deficiency, dicot plants, like Arabidopsis, develop several responses (mainly in their roots) aimed to facilitate the mobilization and uptake of the deficient nutrient. Within these responses are the modification of root morphology, an increased number of transporters, augmented synthesis-release of nutrient solubilizing compounds and the enhancement of some enzymatic activities, like ferric reductase activity (FRA) or phosphatase activity (PA). Once a nutrient has been acquired in enough quantity, these responses should be switched off to minimize energy costs and toxicity. This implies that they are tightly regulated. Although the responses to each deficiency are induced in a rather specific manner, crosstalk between them is frequent and in such a way that P, S, or Fe deficiency can induce responses related to the other two nutrients. The regulation of the responses is not totally known but some hormones and signaling substances have been involved, either as activators [ethylene (ET), auxin, nitric oxide (NO)], or repressors [cytokinins (CKs)]. The plant hormone ET is involved in the regulation of responses to P, S, or Fe deficiency, and this could partly explain the crosstalk between them. In spite of these crosslinks, it can be hypothesized that, to confer the maximum specificity to the responses of each deficiency, ET should act in conjunction with other signals and/or through different transduction pathways. To study this latter possibility, several responses to P, S, or Fe deficiency have been studied in the Arabidopis wild-type cultivar (WT) Columbia and in some of its ethylene signaling mutants (ctr1, ein2-1, ein3eil1) subjected to the three deficiencies. Results show that key elements of the ET transduction pathway, like CTR1, EIN2, and EIN3/EIL1, can play a role in the crosstalk among nutrient deficiency responses.

10.
Plants (Basel) ; 10(2)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33573082

ABSTRACT

Iron (Fe) is an essential micronutrient for plants since it participates in essential processes such as photosynthesis, respiration and nitrogen assimilation. Fe is an abundant element in most soils, but its availability for plants is low, especially in calcareous soils. Fe deficiency causes Fe chlorosis, which can affect the productivity of the affected crops. Plants favor Fe acquisition by developing morphological and physiological responses in their roots. Ethylene (ET) and nitric oxide (NO) have been involved in the induction of Fe deficiency responses in dicot (Strategy I) plants, such as Arabidopsis. In this work, we have conducted a comparative study on the development of subapical root hairs, of the expression of the main Fe acquisition genes FRO2 and IRT1, and of the master transcription factor FIT, in two Arabidopsis thaliana ET insensitive mutants, ein2-1 and ein2-5, affected in EIN2, a critical component of the ET transduction pathway. The results obtained show that both mutants do not induce subapical root hairs either under Fe deficiency or upon treatments with the ET precursor 1-aminocyclopropane-1-carboxylate (ACC) and the NO donor S-nitrosoglutathione (GSNO). By contrast, both of them upregulate the Fe acquisition genes FRO2 and IRT1 (and FIT) under Fe deficiency. However, the upregulation was different when the mutants were exposed to ET [ACC and cobalt (Co), an ET synthesis inhibitor] and GSNO treatments. All these results clearly support the participation of ET and NO, through EIN2, in the regulation of subapical root hairs and Fe acquisition genes. The results will be discussed, taking into account the role of both ET and NO in the regulation of Fe deficiency responses.

11.
Front Plant Sci ; 10: 1237, 2019.
Article in English | MEDLINE | ID: mdl-31649701

ABSTRACT

Iron (Fe) and phosphorus (P) are two essential mineral nutrients whose acquisition by plants presents important environmental and economic implications. Both elements are abundant in most soils but scarcely available to plants. To prevent Fe or P deficiency dicot plants initiate morphological and physiological responses in their roots aimed to specifically acquire these elements. The existence of common signals in Fe and P deficiency pathways suggests the signaling factors must act in conjunction with distinct nutrient-specific signals in order to confer tolerance to each deficiency. Previous works have shown the existence of cross talk between responses to Fe and P deficiency, but details of the associated signaling pathways remain unclear. Herein, the impact of foliar application of either P or Fe on P and Fe responses was studied in P- or Fe-deficient plants of Arabidopsis thaliana, including mutants exhibiting altered Fe or P homeostasis. Ferric reductase and acid phosphatase activities in roots were determined as well as the expression of genes related to P and Fe acquisition. The results obtained showed that Fe deficiency induces the expression of P acquisition genes and phosphatase activity, whereas P deficiency induces the expression of Fe acquisition genes and ferric reductase activity, although only transitorily. Importantly, these responses were reversed upon foliar application of either Fe or P on nutrient-starved plants. Taken together, the results reveal interactions between P- and Fe-related phloem signals originating in the shoots that likely interact with hormones in the roots to initiate adaptive mechanisms to tolerate deficiency of each nutrient.

12.
Front Plant Sci ; 10: 287, 2019.
Article in English | MEDLINE | ID: mdl-30915094

ABSTRACT

Plants develop responses to abiotic stresses, like Fe deficiency. Similarly, plants also develop responses to cope with biotic stresses provoked by biological agents, like pathogens and insects. Some of these responses are limited to the infested damaged organ, but other responses systemically spread far from the infested organ and affect the whole plant. These latter responses include the Systemic Acquired Resistance (SAR) and the Induced Systemic Resistance (ISR). SAR is induced by pathogens and insects while ISR is mediated by beneficial microbes living in the rhizosphere, like bacteria and fungi. These root-associated mutualistic microbes, besides impacting on plant nutrition and growth, can further boost plant defenses, rendering the entire plant more resistant to pathogens and pests. In the last years, it has been found that ISR-eliciting microbes can induce both physiological and morphological responses to Fe deficiency in dicot plants. These results suggest that the regulation of both ISR and Fe deficiency responses overlap, at least partially. Indeed, several hormones and signaling molecules, like ethylene (ET), auxin, and nitric oxide (NO), and the transcription factor MYB72, emerged as key regulators of both processes. This convergence between ISR and Fe deficiency responses opens the way to the use of ISR-eliciting microbes as Fe biofertilizers as well as biopesticides. This review summarizes the progress in the understanding of the molecular overlap in the regulation of ISR and Fe deficiency responses in dicot plants. Root-associated mutualistic microbes, rhizobacteria and rhizofungi species, known for their ability to induce morphological and/or physiological responses to Fe deficiency in dicot plant species are also reviewed herein.

13.
Front Plant Sci ; 9: 1325, 2018.
Article in English | MEDLINE | ID: mdl-30254659

ABSTRACT

Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed.

15.
Front Plant Sci ; 6: 1056, 2015.
Article in English | MEDLINE | ID: mdl-26640474

ABSTRACT

Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.

16.
Plant Physiol ; 169(1): 51-60, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26175512

ABSTRACT

To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed.


Subject(s)
Ethylenes/metabolism , Plant Growth Regulators/metabolism , Plant Physiological Phenomena , Plants/metabolism , Signal Transduction , Iron Deficiencies , Phosphorus/deficiency , Plant Development , Plant Roots/genetics , Plant Roots/metabolism , Plants/genetics , Potassium/metabolism , Stress, Physiological , Sulfur/deficiency
17.
Physiol Plant ; 150(1): 95-106, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23742320

ABSTRACT

In a previous work, it was shown that bicarbonate (one of the most important factors causing Fe chlorosis in Strategy I plants) can limit the expression of several genes involved in Fe acquisition. Hypoxia is considered another important factor causing Fe chlorosis, mainly on calcareous soils. However, to date it is not known whether hypoxia aggravates Fe chlorosis by affecting bicarbonate concentration or by specific negative effects on Fe acquisition. Results found in this work show that hypoxia, generated by eliminating the aeration of the nutrient solution, can limit the expression of several Fe acquisition genes in Fe-deficient Arabidopsis, cucumber and pea plants, like the genes for ferric reductases AtFRO2, PsFRO1 and CsFRO1; iron transporters AtIRT1, PsRIT1 and CsIRT1; H(+) -ATPase CsHA1; and transcription factors AtFIT, AtbHLH38, and AtbHLH39. Interestingly, the limitation of the expression of Fe-acquisition genes by hypoxia did not occur in the Arabidopsis ethylene constitutive mutant ctr1, which suggests that the negative effect of hypoxia is related to ethylene, an hormone involved in the upregulation of Fe acquisition genes. As for hypoxia, results obtained by applying bicarbonate to the nutrient solution suggests that ethylene is also involved in its negative effect, since ACC (1-aminocyclopropane-1-carboxylic acid; ethylene precursor) partially reversed the negative effect of bicarbonate on the expression of Fe acquisition genes. Taken together, the results obtained show that hypoxia and bicarbonate could induce Fe chlorosis by limiting the expression of Fe acquisition genes, probably because each factor negatively affects different steps of ethylene synthesis and/or signaling.


Subject(s)
Bicarbonates/metabolism , Ethylenes/biosynthesis , Gene Expression Regulation, Plant , Iron/metabolism , Oxygen/physiology , Arabidopsis , Cucumis sativus/genetics , Pisum sativum/genetics , Signal Transduction/genetics
18.
Planta ; 237(1): 65-75, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22983673

ABSTRACT

Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.


Subject(s)
Gene Expression Regulation, Plant/genetics , Iron/metabolism , Plant Roots/genetics , Plant Shoots/genetics , Plants/genetics , Amino Acids, Cyclic/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cation Transport Proteins/genetics , Cucumis sativus/genetics , Cucumis sativus/metabolism , FMN Reductase/genetics , Gene Expression Regulation, Plant/drug effects , Iron/pharmacology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Mutation , Nitric Oxide Donors/pharmacology , Pisum sativum/genetics , Pisum sativum/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Plants/metabolism , Reverse Transcriptase Polymerase Chain Reaction , S-Nitrosoglutathione/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
19.
Plant Physiol Biochem ; 49(5): 537-44, 2011 May.
Article in English | MEDLINE | ID: mdl-21316254

ABSTRACT

In previous work it has been shown that both ethylene and NO (nitric oxide) participate in a similar way in the up-regulation of several Fe-acquisition genes of Arabidopsis and other Strategy I plants. This raises the question as to whether NO acts through ethylene or ethylene acts through NO, or whether both act in conjunction. One possibility is that NO could increase ethylene production. Conversely, ethylene could increase NO production. By using Arabidopsis and cucumber plants, we have found that both possibilities occur: NO greatly induces the expression in roots of genes involved in ethylene synthesis: AtSAM1, AtSAM2, AtACS4, AtACS6, AtACO1, AtACO2, AtMTK; CsACS2 and CsACO2; on the other hand, ethylene greatly enhances NO production in the subapical region of the roots. These results suggest that each substance influences the production of the other and that both substances could be necessary for up-regulation of Fe-acquisition genes. This has been further confirmed in experiments with simultaneous application of the NO donor GSNO (S-nitrosoglutathione) and ethylene inhibitors; or with simultaneous application of the ethylene precursor ACC (1-aminocyclopropane-1-carboxylic acid) and an NO scavenger. Both GSNO and ACC enhanced ferric reductase activity in control plants, but not in those plants simultaneously treated with the ethylene inhibitors or the NO scavenger, respectively. To explain all these results and previous ones we have proposed a new model involving ethylene, NO, and Fe in the up-regulation of Fe-acquisition genes of Strategy I plants.


Subject(s)
Amino Acids, Cyclic/pharmacology , Arabidopsis/genetics , Cucumis sativus/genetics , Ethylenes/metabolism , Nitric Oxide/metabolism , Arabidopsis/drug effects , Arabidopsis/enzymology , Cucumis sativus/drug effects , Cucumis sativus/enzymology , FMN Reductase/analysis , FMN Reductase/metabolism , Gene Expression Regulation, Plant , Iron/metabolism , Models, Biological , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/genetics , S-Nitrosoglutathione/pharmacology , Up-Regulation
20.
Plant Signal Behav ; 6(1): 167-70, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21248474

ABSTRACT

Under Fe deficiency, Strategy I (non-graminaceous) plants up-regulate the expression of many Fe acquisition genes and develop morphological changes in their roots. The regulation of these responses is not completely known, but since the 1980's different results suggest a role for auxin, ethylene and, more recently, nitric oxide. The up-regulation of the Fe acquisition genes does not depend solely on these hormones, that would act as activators, but also on some other signals, probably phloem Fe, that would act as an inhibitor. It is not known which of the hormones considered is the last activator of the Fe acquisition genes, but some results suggest that auxin acts upstream of ethylene and NO and that, perhaps, ethylene is the last activator.


Subject(s)
Arabidopsis/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Iron Deficiencies , Nitric Oxide/metabolism , Arabidopsis/genetics , Genes, Plant/genetics , Iron/metabolism , Models, Biological , Plant Roots/cytology , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...