Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(14): e34430, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39130400

ABSTRACT

In recent years, severe climate change leading to by water scarcity reduced water quality has increased the need for effective irrigation strategies for agricultural production. Among these, the reuse of reclaimed water represents a non-expensive and reliable solution. The effect of conventional or reclaimed water, applying convention or smart fertigation system, were investigated during two irrigation seasons on yield, qualitative and biochemical traits of pomegranates fruit (cv Wonderful One) at harvest, and after storage at 7 °C. The results of this study showed that using reclaimed waters with different fertigation systems did not affect the pH values, total soluble solids, and titratable acidity on pomegranates fruit showing slight decrease changes only during postharvest storage. On the other hand, the respiration rate was not affected by water quality. Furthermore, the antioxidant activity was also preserved during storage in pomegranates fruit from plants irrigated with reclaimed water by applying conventional or smart fertigation. The analysis also identified 52 compounds by UHPLC-MSn and HPLC-UV-Vis analyses. A slight decrease (about 17 %) at harvest and during storage in polyphenols content was shown in fruit grown using reclaimed water. The study demonstrates that using reclaimed water is a sustainable and effective way to limit the use of conventional water for irrigating pomegranate crops without significant reduction in yield, or in qualitative and nutritional values of the fruit at harvest and during storage.

2.
Foods ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38890825

ABSTRACT

Citron (Citrus medica L. cv. Liscia-diamante), cultivated in the "Riviera dei Cedri" (southern Italy), is mainly utilized in the production of candied fruit and essential oils (EOs). Up to now, no information regarding the effect of storage temperatures on citron has been reported. Here, citron samples, after harvesting, were stored at different temperatures (5, 10 and 20 °C at 70% relative humidity) for two weeks, and the main postharvest quality parameters were evaluated. Moreover, EOs extracted from the stored samples were chemically characterized to reveal changes in the volatiles profile and antimicrobial activity. The EOs presented monoterpene hydrocarbons (87.1 to 96.3% of the total oil profile) as the most abundant compounds, followed by oxygenated metabolites ranging from 9.7 to 3.1% of the total pattern. Postharvest quality traits showed a good retention of green peel color during storage at 5 °C, while EOs from samples stored for 7 and 14 days at 10 and 20 °C, respectively, showed the highest antimicrobial activity against most assayed strains. The results indicated storage at 10 °C for 7 days as the most suitable for the preservation of the postharvest quality of the fruit and the antimicrobial activity of the extracted EOs.

3.
Foods ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611352

ABSTRACT

Fresh-cut processing is a good strategy to enhance the commercialization of peaches and nectarines, which easily deteriorate during low-temperature storage mostly due to the occurrence of chilling injury. Although several studies have been performed to improve the shelf-life of fresh-cut stone fruit, the achievement of high-quality fresh-cut peaches and nectarines still constitutes a challenge. The present study aimed to gain insights into the evolution of the postharvest quality of fresh-cut nectarines (Prunus persica L. Batsch) Big Bang, cold-stored at two different storage temperatures (4 and 8 °C) for up to 10 days. Several aspects influencing the quality traits (sensory and postharvest quality parameters; the profile of phenolic and volatile organic compounds (VOCs)) were explored to predict the marketable life of the fresh-cut nectarines. The respiration rate was higher in samples stored at 4 °C, while the browning process was more evident in fruit stored at 8 °C. Partial Least Squares Regression performed on VOCs showed that samples stored at 4 °C and 8 °C presented a different time evolution during the experiment and the trajectories depended on the interaction between time and temperature. Moreover, Multiple Linear Regression analysis discovered that the 17 VOCs affected by the storage conditions seemed to suggest that no chilling injury was detected for nectarines Big Bang. In conclusion, this approach could also be used with other nectarine cultivars and/or different stone fruits.

4.
Plants (Basel) ; 13(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38502041

ABSTRACT

Reducing fertilizer input is a goal for helping greenhouse farming to achieve higher sustainability in the production process while preserving overall crop performance and quality. Wild rocket plants were cultivated in a plastic greenhouse divided into two independent sectors, one for soil-bound (SbS) cultivation and another equipped for soilless (ScS) cultivation systems. In both SbS and ScS, the crop was subjected to treatments consisting of a high- and a low-input fertilization program (HF and LF treatment, respectively). Water use efficiency (WUE) and partial factor productivity (PFP) for nutrients (N, P, K, Ca, and Mg for ScS, and N for SbS) were measured. Rocket leaves, separated for the cultivation system and fertilization program and collected at different cuts during the growing cycle, were cold stored at 10 °C until 16 d. On each sampling day (at harvest and during storage), the sensory parameters, respiration rate, dry matter, color, electrolyte leakage, antioxidant activity, total phenols, total chlorophyll and ammonia content were evaluated. In ScS, the PFP for all nutrients supplied as fertilizers showed a significant increase with the LF treatment, with values higher than 30% recorded for N, K, and Ca. As for the postharvest performance, rocket leaves cultivated in ScS showed better qualitative traits than those cultivated in SbS, as suggested by the lower values of ammonia content and electrolyte leakage recorded at the end of storage period in samples grown in ScS. Moreover, in ScS, the data showed lower membrane damage in LF than HF rocket leaves. Finally, regarding total chlorophyll content, even if no effect of each treatment was recorded in SbS, rocket cultivated in ScS showed a better retention of this parameter by applying LF rather than HF treatment. In addition to this, a PLS model (R2 = 0.7) able to predict the cultivation system, using as a variable non-destructively measured total chlorophyll content, was implemented. Low fertilization input, both in SbS and in ScS, allowed satisfying production levels and more sustainable management of nutrients. LF treatment applied to ScS also had in positive effects on the postharvest quality of fresh-cut rocket leaves.

5.
Foods ; 12(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37107459

ABSTRACT

Fruits and vegetables are important sources of nutrients such as vitamins, minerals, and bioactive compounds, which provide many health benefits [...].

6.
Foods ; 11(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36496732

ABSTRACT

Quality losses in fresh produce throughout the postharvest phase are often due to the inappropriate use of preservation technologies. In the last few decades, besides the traditional approaches, advanced postharvest physical and chemical treatments (active packaging, dipping, vacuum impregnation, conventional heating, pulsed electric field, high hydrostatic pressure, and cold plasma) and biocontrol techniques have been implemented to preserve the nutritional value and safety of fresh produce. The application of these methodologies after harvesting is useful when addressing quality loss due to the long duration when transporting products to distant markets. Among the emerging technologies and contactless and non-destructive techniques for quality monitoring (image analysis, electronic noses, and near-infrared spectroscopy) present numerous advantages over the traditional, destructive methods. The present review paper has grouped original studies within the topic of advanced postharvest technologies, to preserve quality and reduce losses and waste in fresh produce. Moreover, the effectiveness and advantages of some contactless and non-destructive methodologies for monitoring the quality of fruit and vegetables will also be discussed and compared to the traditional methods.

7.
Foods ; 11(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36010478

ABSTRACT

Rhizopus oryzae is responsible for rapidly producing a deliquescent appearance in grape berries, generally favoured by cold chain interruptions. To counteract fruit spoilage and to meet consumer acceptance, innovative strategies based on the application of natural compounds are ongoing. Due to their biological activities, including antimicrobial ones, natural flavour compounds extend the shelf life and improve the nutritional value as well as the organoleptic properties of foods. Thus, in this work, the application of the antimicrobial citral, a flavor component of monoterpenes identified in plant and fruit essential oils, was developed and validated against one spoiler of R. oryzae. Citral, as pure compound, was first investigated in vitro against R. oryzae ITEM 18876; then, concentrations equal to the minimal inhibitory concentration (MIC) and 4-fold MIC (4MIC) value were applied on the table grape cv Italia infected with this strain and stored. The MIC value was equal to 0.0125 µL/cm3; both citral concentrations (0.0125 and 0.05 µL/cm3) were effective in counteracting the microbial decay of infected table grapes over the storage period. The HS-SPME/GC-MS method showed citral persistence in the head space of plastic trays with the infected samples; as expected, a higher content of citral isomers was found in the sample treated with 4MIC value. In conclusion, citral revealed its efficacy to counteract the onset of soft rot by R. oryzae ITEM 18876 under storage conditions. Thus, it could be successfully exploited to develop an active packaging or natural preservatives to extend table grape shelf life without affecting its quality and sensory characteristics, whilst also satisfying the consumer demand for natural preservative agents.

8.
Foods ; 11(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35681286

ABSTRACT

Electronic nose (e-nose), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and image analysis (IA) were used to discriminate the ripening stage (half-red or red) of strawberries (cv Sabrosa, commercially named Candonga), harvested at three different times (H1, H2 and H3). Principal component analysis (PCA) performed on the e-nose, ATR-FTIR and IA data allowed us to clearly discriminate samples based on the ripening stage, as in the score space they clustered in distinct regions of the plot. Moreover, a correlation analysis between the e-nose sensor and 57 volatile organic compounds (VOCs), which were overall detected in all the investigated fruit samples by headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS), allowed us to distinguish half-red and red strawberries, as the e-nose sensors gave distinct responses to samples with different flavours. Three suitable broad bands were individuated by PCA in the ATR-FTIR spectra to discriminate half-red and red samples: the band centred at 3295 cm-1 is generated by compounds that decline, whereas those at 1717 cm-1 and at 1026 cm-1 stem from compounds that accumulate during ripening. Among the chemical parameters (titratable acidity, total phenols, antioxidant activity and total soluble solid) assayed in this study, only titratable acidity was somehow correlated to ATR-FTIR and IA patterns. Thus, ATR-FTIR spectroscopy and IA might be exploited to rapidly assess titratable acidity, which is an objective indicator of the ripening stage.

10.
Foods ; 10(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34945655

ABSTRACT

Volatile compounds, quality traits (total phenols and antioxidant capacity) and High-performance liquid chromatography (HPLC)-isolated polyphenols of strawberries, variety Sabrosa, commercially referred to as "Candonga", harvested at three different times (H1, H2 and H3) and at two different ripening stages, namely half-red (Half-red-H1, Half-red-H2 and Half-red-H3) and red (Red-H1, Red-H2 and Red-H3) were evaluated. Dominant anthocyanins, namely cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside, as well as p-coumaryl hexoside increased during harvesting, differently from flavonoids, such as quercetin-3-O-glucoside, kaempferol-3-O-glucoronide and quercetin 3-O-glucoronide, that declined. Samples clustered in different quadrants of the principal component analysis (PCA) performed on volatiles, quality traits and phenolic compounds, highlighting that only the red samples were directly correlated to volatile components, as volatiles clearly increased both in number and amount during ripening. In particular, volatiles with a positive impact on the consumers' acceptance, including butyl butyrate, ethyl hexanoate, hexyl acetate, nonanal, terpenes and lactones, were positively associated with the Red-H1 and Red-H2 strawberries, while volatiles with negative coefficients related to consumer liking, including isopropyl butyrate, isoamyl butyrate and mesifurane directly correlated with the Red-H3 samples. Accordingly, strawberries harvested at Red-H1 and Red-H2 ripening stages could be preferred by the consumers compared to the Red-H3 fruit. Altogether, these results could help to individuate quality traits as putative markers of the ripening stage, and optimize the process of post-harvesting ripening to preserve or improve the desirable aromatic characteristics of strawberries.

11.
Front Nutr ; 8: 720092, 2021.
Article in English | MEDLINE | ID: mdl-34621775

ABSTRACT

This study aimed to explore the applicability of electronic-nose (E-nose) as a rapid method in discriminating samples of sweet cherry cv "Ferrovia" stored in high-CO2 (16% O2 + 20% CO2 + 64% N2) or air (control) up to 21 days. Projection to Latent Structures (PLS) methods applied to E-nose data showed that fresh fruit and the packaged or unpackaged samples can be distinguished, according to both the storage condition and the storage days. Moreover, a correlation analysis between E-nose sensors and 45 volatile compounds were overall, obtained from all the investigated sweet cherry samples by Headspace Solid-Phase Microextraction (HS SPME) coupled to Gas Chromatography-Mass Spectrometry (GC-MS). These methods allowed to associate samples with a specific flavour profile to one or more E-nose sensors. Finally, quality attributes (visual quality, colour, firmness, antioxidant activity, total phenols, and sugar content) were assessed during storage. Among these, visual quality and berry deformation resulted affected by storage conditions, showing that high-CO2 treatment better preserved the fruit quality than control.

12.
Foods ; 10(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805357

ABSTRACT

The preservation of the freshness of fruits and vegetables until their consumption is the aim of many research activities. Quality losses of fresh fruit and vegetables during cold chain are frequently attributable to an inappropriate use of postharvest technologies. Moreover, especially when fresh produce is transported to distant markets, it is necessary to adopt proper postharvest preservation technologies in order to preserve the initial quality and limit microbial decay. Nowadays, for each step of supply chain (packing house, cold storage rooms, precooling center, refrigerate transport and distribution), are available innovative preservation technologies that, alone or in combination, could improve the fresh products in order to maintain the principal quality and nutritional characteristics. The issue groups five original studies and two comprehensive reviews within the topic of preservation technologies related to innovative packaging and postharvest operation and treatments, highlighting their effect on quality keeping.

13.
Nanomaterials (Basel) ; 10(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327664

ABSTRACT

Blueberries are popular among consumers for their high nutritional value but are highly perishable due to the microbial decay. The use of active packaging that is able to interact with the food through releasing or absorbing substances can be a valid approach to preserve the quality and increase the fruit's shelf-life. In this paper, an active packaging based on polyethylene (PE) filled with a nano-carrier of salicylate was prepared and characterized. Fresh blueberries were packaged in passive modified atmosphere packaging (pMA) for 13 days at 8 °C. The combination of the active filler in bulk and pMA showed a significant inhibition of mold development and a reduction of the respiration rate of fruits. Moreover, the release of salicylate on blueberries did not alter the fruits' sensory traits and preserved the firmness and the nutritional quality. Finally, the combination of active packaging and pMA resulted a valid solution to extend blueberries' shelf-life up to 13 days.

14.
Foods ; 9(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32824971

ABSTRACT

Consumers highly appreciate table grapes for their pleasant sensory attributes and as good sources of nutritional and functional compounds. This explains the rising market and global interest in this product. Along with other fruits and vegetables, table grapes are considerably perishable post-harvest due to the growth of undesired microorganisms. Among the microbial spoilers, Botrytis cinerea represents a model organism because of its degrading potential and the huge economic losses caused by its infection. The present review provides an overview of the recent primary physical, chemical, and biological control treatments adopted against the development of B. cinerea in table grapes to extend shelf life. These treatments preserve product quality and safety. This article also focuses on the compliance of different approaches with organic and sustainable production processes. Tailored approaches include those that rely on controlled atmosphere and the application of edible coating and packaging, as well as microbial-based activities. These strategies, applied alone or in combination, are among the most promising solutions in order to prolong table grape quality during cold storage. In general, the innovative design of applications dealing with hurdle technologies holds great promise for future improvements.

15.
Foods ; 9(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722076

ABSTRACT

Leaf edge browning is the main factor affecting fresh-cut lettuce marketability. Dipping in organic acids as well as the low O2 modified atmosphere packaging (MAP), can be used as anti-browning technologies. In the present research paper, the proper oxalic acid (OA) concentration, able to reduce respiration rate of fresh-cut iceberg lettuce, and the suitable packaging materials aimed to maintaining a low O2 during storage, were selected. Moreover, the combined effect of dipping (in OA or in citric acid) and packaging in low O2 was investigated during the storage of fresh-cut iceberg lettuce for 14 days. Results showed a significant effect of 5 mM OA on respiration rate delay. In addition, polypropylene/polyamide (PP/PA) was select as the most suitable packaging material to be used in low O2 MAP. Combining OA dipping with low O2 MAP using PP/PA as material, resulted able to reduce leaf edge browning, respiration rate, weight loss and electrolyte leakage, preserving the visual quality of fresh-cut lettuce until 8 days at 8 °C.

16.
Food Chem ; 315: 126247, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32006866

ABSTRACT

Three non-targeted methods, i.e. 1H NMR, LC-HRMS, and HS-SPME/MS-eNose, combined with chemometrics, were used to classify two table grape cultivars (Italia and Victoria) based on five quality levels (5, 4, 3, 2, 1). Grapes at marketable quality levels (5, 4, 3) were also discriminated from non-marketable quality levels (2 and 1). PCA-LDA and PLS-DA were applied, and results showed that, the MS-eNose provided the best results. Specifically, with the Italia table grapes, mean prediction abilities ranging from 87% to 88% and from 98% to 99% were obtained for discrimination amongst the five quality levels and of marketability/non-marketability, respectively. For the cultivar Victoria, mean predictive abilities higher than 99% were achieved for both classifications. Good models were also obtained for both cultivars using NMR and HRMS data, but only for classification by marketability. Satisfying models were further validated by MCCV. Finally, the compounds that contributed the most to the discriminations were identified.


Subject(s)
Food Analysis/methods , Food Storage , Proton Magnetic Resonance Spectroscopy/methods , Vitis/chemistry , Electronic Nose/statistics & numerical data , Food Analysis/statistics & numerical data , Food Quality , Least-Squares Analysis , Mass Spectrometry/methods , Mass Spectrometry/statistics & numerical data , Multivariate Analysis , Principal Component Analysis , Proton Magnetic Resonance Spectroscopy/statistics & numerical data , Volatile Organic Compounds/analysis
17.
Food Chem ; 229: 752-760, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28372241

ABSTRACT

Leaves of three different sweet basil (Ocimum basilicum L.) cultivars (Italico a foglia larga, Cammeo, and Italiano classico) packed in macro-perforated polyethylene bags were stored at chilling (4°C) or non-chilling temperature (12°C) for 9days. During storage, visual quality, physiological (respiration rate, ethylene production, ammonium content) and chemical (antioxidant activity, total polyphenols and polyphenol profile) parameters were measured. Detached leaves stored at chilling temperature showed visual symptoms related to chilling injury, while ethylene production and ammonium content resulted associated to cultivar sensibility to damage at low temperature. Storage at 4°C caused a depletion in polyphenols content and antioxidant capability, which was preserved at 12°C. Regarding the polyphenols profile, stressful storage conditions did not enhance the phenolic metabolism. However, leaves stored at 12°C did not loss a significant amount of metabolites respect to fresh leaves, suggesting the possibility to extend the storability after the expiration date, for a possible recovery of bioactive compounds.


Subject(s)
Cold Temperature/adverse effects , Food Quality , Food Storage/methods , Ocimum basilicum/chemistry , Ocimum basilicum/physiology , Antioxidants/analysis , Food Storage/standards , Phenols/analysis , Plant Leaves/chemistry , Plant Leaves/physiology , Polyphenols/analysis
18.
Food Chem ; 213: 361-368, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27451192

ABSTRACT

The volatile profile of three sweet basil cultivars, "Italico a foglia larga", "Cammeo" and "Italiano classico", packaged in air at 4 or 12°C until 9days, was monitored by solid phase microextraction with GC-MS. Chilling injury (CI) score and electrolyte leakage were also assessed. In total, 71 volatile organic compounds (VOCs) were identified in the headspace of basil samples. A preliminary principal component analysis highlighted the dominant effect of the cultivar on VOCs profiles. Data analysis by post-transformation of projection to latent structures regression (ptPLS2) clarified the role played by time and temperature of storage. Temperature influenced the emission of volatiles during storage, with much lower total volatile emissions at 4°C compared to 12°C. Finally, a ptPLS2 regression model performed on VOCs and the two CI parameters allowed selection of 10 metabolites inversely correlated to both CI parameters, which can be considered potential markers of CI in basil leaves.


Subject(s)
Ocimum basilicum/chemistry , Plant Leaves/chemistry , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Cold Temperature
19.
Food Chem ; 192: 603-11, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26304389

ABSTRACT

The volatile profile of two hybrids of "Radicchio di Chioggia", Corelli and Botticelli, stored in air or passive modified atmosphere (MAP) during 12 days of cold storage, was monitored by solid phase micro-extraction (SPME) GC-MS. Botticelli samples were also subjected to sensory analysis. Totally, 61 volatile organic compounds (VOCs) were identified in the headspace of radicchio samples. Principal component analysis (PCA) showed that fresh product possessed a metabolic content similar to that of the MAP samples after 5 and 8 days of storage. Projection to latent structures by partial least squares (PLS) regression analysis showed the volatiles content of the samples varied depending only on the packaging conditions. Specifically, 12 metabolites describing the time evolution and explaining the effects of the different storage conditions were highlighted. Finally, a PCA analysis revealed that VOCs profile significantly correlated with sensory attributes.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Volatile Organic Compounds/chemistry , Air , Atmosphere , Volatile Organic Compounds/analysis
20.
J Food Sci Technol ; 51(1): 25-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24426044

ABSTRACT

In order to increase the diffusion of cactus pear fruits, in this study, the proper maturity index for peeling and processing them as ready-to-eat product was evaluated and characterized. Thereafter, the effects of different storage temperatures and modified atmosphere conditions on the marketability of ready-to-eat cactus pear were studied. The storage of ready-to-eat fruits at 4 °C in both passive (air) and semi-active (10 kPa O2 and 10 kPa CO2) modified atmosphere improved the marketability by 30%, whereas the storage at 8 °C caused a dangerous reduction in O2 partial pressure inside modified atmosphere packages, due to fruits' increased metabolic activity. A very low level of initial microbial growth was detected, while a severe increase in mesophilic and psychrophilic bacteria was shown in control samples at both temperatures during storage; an inhibitory effect of modified atmosphere on microbial growth was also observed. In conclusion, modified atmosphere improved only the marketability of fruits stored at 4 °C; whereas the storage at 8 °C resulted in deleterious effects on the ready-to-eat fruits, whether stored in air or in modified atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL