Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Zool ; 20(1): 20, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231517

ABSTRACT

BACKGROUND: There is need of information on ecological interactions that keystone species such as apex predators establish in ecosystems recently recolonised. Interactions among carnivore species have the potential to influence community-level processes, with consequences for ecosystem dynamics. Although avoidance of apex predators by smaller carnivores has been reported, there is increasing evidence that the potential for competitive-to-facilitative interactions is context-dependent. In a protected area recently recolonised by the wolf Canis lupus and hosting abundant wild prey (3 ungulate species, 20-30 individuals/km2, together), we used 5-year food habit analyses and 3-year camera trapping to (i) investigate the role of mesocarnivores (4 species) in the wolf diet; (ii) test for temporal, spatial, and fine-scale spatiotemporal association between mesocarnivores and the wolf. RESULTS: Wolf diet was dominated by large herbivores (86% occurrences, N = 2201 scats), with mesocarnivores occurring in 2% scats. We collected 12,808 carnivore detections over > 19,000 camera trapping days. We found substantial (i.e., generally ≥ 0.75, 0-1 scale) temporal overlap between mesocarnivores-in particular red fox-and the wolf, with no support for negative temporal or spatial associations between mesocarnivore and wolf detection rates. All the species were nocturnal/crepuscular and results suggested a minor role of human activity in modifying interspecific spatiotemporal partitioning. CONCLUSIONS: Results suggest that the local great availability of large prey to wolves limited negative interactions towards smaller carnivores, thus reducing the potential for spatiotemporal avoidance. Our study emphasises that avoidance patterns leading to substantial spatiotemporal partitioning are not ubiquitous in carnivore guilds.

2.
Animals (Basel) ; 12(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36139288

ABSTRACT

Non-invasive genetic sampling is a practical tool to monitor pivotal ecological parameters and population dynamic patterns of endangered species. It can be particularly suitable when applied to elusive carnivores such as the Apennine wolf (Canis lupus italicus) and the European wildcat (Felis silvestris silvestris), which can live in overlapping ecological contexts and sometimes share their habitats with their domestic free-ranging relatives, increasing the risk of anthropogenic hybridisation. In this case study, we exploited all the ecological and genetic information contained in a single biological canid faecal sample, collected in a forested area of central Italy, to detect any sign of trophic interactions between wolves and European wildcats or their domestic counterparts. Firstly, the faecal finding was morphologically examined, showing the presence of felid hair and claw fragment remains. Subsequently, total genomic DNA contained in the hair and claw samples was extracted and genotyped, through a multiple-tube approach, at canid and felid diagnostic panels of microsatellite loci. Finally, the obtained individual multilocus genotypes were analysed with reference wild and domestic canid and felid populations to assess their correct taxonomic status using Bayesian clustering procedures. Assignment analyses classified the genotype obtained from the endothelial cells present on the hair sample as a wolf with slight signals of dog ancestry, showing a qi = 0.954 (C.I. 0.780-1.000) to the wolf cluster, and the genotype obtained from the claw as a domestic cat, showing a qi = 0.996 (95% C.I. = 0.982-1.000) to the domestic cat cluster. Our results clearly show how a non-invasive multidisciplinary approach allows the cost-effective identification of both prey and predator genetic profiles and their taxonomic status, contributing to the improvement of our knowledge about feeding habits, predatory dynamics, and anthropogenic hybridisation risk in threatened species.

SELECTION OF CITATIONS
SEARCH DETAIL
...