Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Chem Biodivers ; : e202401315, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136528

ABSTRACT

We have synthesized a series of novel coumarin-steroid and triterpenoid hybrids and evaluated their potential anticancer activity through molecular docking calculations and in vitro antiproliferative assays. These hybrids, derived from estrone and oleanolic acid, were linked via hydrocarbon spacers of varying lengths. Molecular docking studies against human aromatase revealed strong interactions, particularly for compound 11d, which exhibited significant binding affinity (-12.6308 kcal/mol). In vitro assays demonstrated that compounds 6b and 11d had notable antiproliferative effects, with GI50 values of 5.4 and 7.0 µM against WiDr (colon) and HeLa (cervix) cancer cells, respectively. These findings highlight the potential of these hybrids as novel anticancer agents targeting aromatase, warranting further investigation and optimization.

2.
Arch Pharm (Weinheim) ; : e2400431, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105404

ABSTRACT

A series of new hybrid compounds was prepared combining tetrahydropyran rings with different aromatic systems by means of a 1,2,3-triazole, using a building block strategy. The design of these structures was guided by Lead-Likeness and Molecular Analysis (LLAMA) software, adding modifications to our most potent scaffold (the tetrahydropyran ring) to generate promising "lead-like" candidates, which were subsequently compared against reported anticancer compounds. Our synthesized compounds demonstrated significant antiproliferative activity when compared with the standards cisplatin and 5-fluorouracil, across a panel of six different tumor cell lines. Moreover, compared with our group's previous hybrid compounds, these new structures exhibit similar activity while offering simpler synthesis and greater potential for structural diversification, a fact that was previously an issue. Further investigations on the most active compounds included assessments of reproductive cell survival, inhibition of cell migration, and effects on nuclear morphology, indicating potential diverse mechanisms of action for these compounds. Pharmacokinetic properties were also calculated for the whole series of compounds using the pkCSM online software.

3.
Beilstein J Org Chem ; 20: 1213-1220, 2024.
Article in English | MEDLINE | ID: mdl-38887573

ABSTRACT

Considering early-stage drug discovery programs, the Ugi four-component reaction is a valuable, flexible, and pivotal tool, facilitating the creation of two new amide bonds in a one-pot fashion to effectively yield the desired α-aminoacylamides. Here, we highlight the reputation of this reaction approach to access number and scaffold diversity of a library of isatin-based α-acetamide carboxamide oxindole hybrids, promising anticancer agents, in a mild and fast sustainable reaction process. The library was tested against six human solid tumor cell lines, among them, non-small cell lung carcinoma, cervical adenocarcinoma, breast cancer and colon adenocarcinoma. The most potent compounds 8d, 8h and 8k showed GI50 values in the range of 1-10 µM.

4.
Bioorg Chem ; 149: 107485, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824700

ABSTRACT

There is a continuous and pressing need to establish new brain-penetrant bioactive compounds with anti-cancer properties. To this end, a new series of 4'-((4-substituted-4,5-dihydro-1H-1,2,3-triazol-1-yl)methyl)-[1,1'-biphenyl]-2-carbonitrile (OTBN-1,2,3-triazole) derivatives were synthesized by click chemistry. The series of bioactive compounds were designed and synthesized from diverse alkynes and N3-OTBN, using copper (II) acetate monohydrate in aqueous dimethylformamide at room temperature. Besides being highly cost-effective and significantly reducing synthesis, the reaction yielded 91-98 % of the target products without the need of any additional steps or chromatographic techniques. Two analogues exhibit promising anti-cancer biological activities. Analogue 4l shows highly specific cytostatic activity against lung cancer cells, while analogue 4k exhibits pan-cancer anti-growth activity. A kinase screen suggests compound 4k has single-digit micromolar activity against kinase STK33. High STK33 RNA expression correlates strongly with poorer patient outcomes in both adult and pediatric glioma. Compound 4k potently inhibits cell proliferation, invasion, and 3D neurosphere formation in primary patient-derived glioma cell lines. The observed anti-cancer activity is enhanced in combination with specific clinically relevant small molecule inhibitors. Herein we establish a novel biochemical kinase inhibitory function for click-chemistry-derived OTBN-1,2,3-triazole analogues and further report their anti-cancer activity in vitro for the first time.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Click Chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Triazoles , Humans , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Molecular Structure , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis
5.
RSC Adv ; 14(26): 18703-18715, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38863826

ABSTRACT

In the present work, derivatives of phenanthridine-6(5H)-ones and benzo[c]chromenes were efficiently prepared through an intramolecular C-H bond functionalization reaction catalyzed by photochemically synthesized Pd-PVP nanoparticles. The heterocycles were obtained via intramolecular arylation of the corresponding N-methyl-N-aryl-2-halobenzamide or aryl-(2-halo)benzyl ethers using K2CO3 as base in a mixture of H2O : DMA as solvent without additives or ligands. High yields of the heterocyclic compounds were achieved (up to 95%) using a moderately low catalyst loading (1-5 mol%) under an air atmosphere at 100 °C. The reaction exhibited very good tolerance to diverse functional groups (OMe, Me, t Bu, Ph, OCF3, CF3, F, Cl, -CN, Naph), and both bromine and iodine substrates showed great reactivity. Finally, the in vitro antiproliferative activity of phenanthridine-6(5H)-ones and benzo[c]chromenes was evaluated against six human solid tumor cell lines. The more active compounds exhibit activity in the low micromolar range. 1-Isopropyl-4-methyl-6H-benzo[c]chromene was identified as the best compound with promising values of activity (GI50 range 3.9-8.6 µM). Thus, the benzochromene core was highlighted as a novel organic building block to prepare potential antitumor agents.

6.
Int J Med Mushrooms ; 26(5): 73-86, 2024.
Article in English | MEDLINE | ID: mdl-38780424

ABSTRACT

Polyporoid fungi represent a vast source of bioactive compounds with potential pharmacological applications. The importance of polyporoid fungi in traditional Chinese medicine has led to an extensive use of some species of Ganoderma for promoting health and longevity because their consumption is associated with several bioactivities. Nevertheless, bioactivity of some other members of the Polyporaceae family has also been reported. This work reports the antiproliferative and antibacterial activity of crude extracts obtained from fruiting bodies of polypore fungi collected from the central region of Veracruz, Mexico, aimed at understanding the diversity of polypore species with potential pharmacological applications. 29 collections were identified macro- and microscopically in 19 species of polyporoid fungi, belonging to 13 genera. The antiproliferative activity screening of extracts against solid tumor cell lines (A549, SW1573, HeLa, HBL-100, T-47D, WiDr) allow us to identify four extracts with strong bioactivity [half-maximal growth inhibition (GI50) ≤ 50 µg/mL]. After this, a phylogenetic analysis of DNA sequences from the ITS region obtained from bioactive specimens allowed us to identify three extracts as Pycnoporus sanguineus (GI50 = ≤ 10 µg/mL) and the fourth bioactive extract as Ganoderma oerstedii (GI50 = < 50 µg/mL. Likewise, extracts from P. sanguineus showed mild or moderate antibacterial activity against Escherichia coli, Staphylococcus aureus and Xanthomonas albilineas. Bioprospecting studies of polyporoid fungi add to the knowledge of the diversity of macrofungi in Mexico and allow us to select one of the bioactive P. sanguineus to continue the pursuit of bioactive compounds through mycochemical studies.


Subject(s)
Anti-Bacterial Agents , Phylogeny , Mexico , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polyporaceae/chemistry , Polyporaceae/classification , Fruiting Bodies, Fungal/chemistry , Microbial Sensitivity Tests
7.
Eur J Med Chem ; 271: 116438, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38685141

ABSTRACT

One of the key strategies in chemotherapy involves crosslinking the DNA strands of cancer cells to impede their replication, with platinum (Pt) coordination compounds being a prominent class and cisplatin being its major representative. Steroidal ligands tethered to DNA interactive Pt core act as drug carriers for targeted therapy. While crosslinking of nuclear or mitochondrial DNA strands using coordination complexes has been studied for years, there remains a lack of comprehensive reviews addressing the advancements made in steroidal-Pt derivatives. This review specifically focuses on advancements made in steroid-tethered structural derivatives of Pt(II) or prodrug Pt(IV) for targeted chemotherapy, synthesized between 2000 and 2023. This period was deliberately chosen due to the widespread use of computational techniques for more accurate structure-based drug-design in last two decades. This review discusses the strategy behind tethering steroidal ligands such as testosterone, estrogen, bile acids, and cholesterol to the central DNA interactive Pt core through specific linker groups. The steroidal ligands function as drug delivery vehicles of DNA interactive Pt core and bind with their respective target receptors or proteins that are often overexpressed in cancer cells, thus enabling targeted delivery of Pt moiety to interact with DNA. We discussed structural features such as the location of the linker group on the steroid, the mono, bi, and tridentate configuration of the chelating arm in coordination with Pt, and the rigidity and flexibility of the linker group. The comparative in vitro, in vivo activities, and relative binding affinities of the designed compounds against standard Pt drugs are also discussed. We also provided a critique of observed trends and shortcomings. Our review will provide insights into future molecular designing of targeted DNA crosslinkers and their structural optimization to achieve desired drug properties. From this analysis, we proposed further research directions leading to the future of targeted chemotherapy.


Subject(s)
Antineoplastic Agents , Steroids , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Steroids/chemistry , Steroids/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemical synthesis , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Molecular Structure , DNA/chemistry , DNA/metabolism
8.
Org Biomol Chem ; 22(17): 3425-3438, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38590227

ABSTRACT

We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 µM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.


Subject(s)
Antineoplastic Agents , Butyrylcholinesterase , Cell Proliferation , Cholinesterase Inhibitors , Coumarins , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Butyrylcholinesterase/metabolism , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Cell Line, Tumor , Structure-Activity Relationship , Molecular Structure , Drug Screening Assays, Antitumor , Aza Compounds/chemistry , Aza Compounds/pharmacology , Aza Compounds/chemical synthesis , Dose-Response Relationship, Drug , Neurons/drug effects
9.
RSC Adv ; 14(13): 9300-9313, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38505382

ABSTRACT

Owing to the massive importance of dihydropyrimidine (DHPMs) scaffolds in the pharmaceutical industry and other areas, we developed an effective and sustainable one-pot reaction protocol for the synthesis of (R/S)-2-thioxo-DHPM-5-carboxanilides via the Biginelli-type cyclo-condensation reaction of aryl aldehydes, thiourea and various acetoacetanilide derivatives in ethanol at 100 °C. In this protocol, taurine was used as a green and reusable bio-organic catalyst. Twenty-three novel derivatives of (R/S)-TDHPM-5-carboxanilides and their structures were confirmed by various spectroscopy techniques. The aforementioned compounds were synthesized via the formation of one asymmetric centre, one new C-C bond, and two new C-N bonds in the final product. All the newly synthesized compounds were obtained in their racemic form with up to 99% yield. In addition, the separation of the racemic mixture of all the newly synthesized compounds was carried out by chiral HPLC (Prep LC), which provided up to 99.99% purity. The absolute configuration of all the enantiomerically pure isomers was determined using a circular dichroism study and validated by a computational approach. With up to 99% yield of 4d, this one-pot synthetic approach can also be useful for large-scale industrial production. One of the separated isomers (4R)-(+)-4S developed as a single crystal, and it was found that this crystal structure was orthorhombic.

10.
Biochem Pharmacol ; 222: 116059, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364984

ABSTRACT

Isatin derivatives have attracted a lot of interest for their potential in the development of new anticancer drugs. A library of 38 isatin derivatives, created through an Ugi four-component reaction, underwent an initial screening in a panel of six human solid tumor cell lines. The four most active derivatives were then selected for further testing. These compounds showed selectivity towards the non-small cell lung cancer (NSCLC) cell line SW1573, whilst NSCLC A549 cells were barely affected. The combination of phenotypic assays, including wound healing, clonogenic and continuous live cell imaging provided a deeper understanding of the compounds' mode of action. In particular, the latter demonstrated that isatin derivatives were able to induce necroptosis in SW1573 cells. The kinetics of cell death showed that necroptosis appeared after 2.5 h of exposure, which could be delayed to 7 h when co-treated with necrostatin-1. Interaction between the isatin derivatives and the KRAS G12C protein variant was discarded after in silico studies. Further studies are warranted to identify the cellular target responsible for the observed selectivity among cell lines.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Isatin , Lung Neoplasms , Humans , Cytotoxins , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Isatin/pharmacology , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Proliferation , Molecular Structure
11.
Bioorg Chem ; 145: 107168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354500

ABSTRACT

Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrases , Organophosphorus Compounds , Humans , Carbonic Anhydrases/metabolism , Salts , Structure-Activity Relationship , Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemistry , Coumarins/chemistry , Guanidines , Carbonic Anhydrase Inhibitors/chemistry , Molecular Structure
12.
J Enzyme Inhib Med Chem ; 39(1): 2302920, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38221785

ABSTRACT

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIß isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.


Subject(s)
Antineoplastic Agents , Topoisomerase II Inhibitors , Humans , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Carbazoles/pharmacology , Carbazoles/chemistry , DNA Topoisomerases, Type II , Apoptosis
13.
Arch Pharm (Weinheim) ; 357(3): e2300632, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38150663

ABSTRACT

Herein, we outline a highly efficient PEG-4000-mediated one-pot three-component reaction for the synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole derivatives (5a-r) at up to 96% yield as antiproliferative agents. This three-component protocol offers the advantages of an environmentally benign reaction, excellent yield, quick response time, and operational simplicity triggered by the copper catalyst under microwave irradiation. All the synthesized compounds were tested for antiproliferative activity against six human solid tumor cell lines, that is, A549 and SW1573 (nonsmall cell lung), HBL100 and T-47D (breast), HeLa (cervix), and WiDr (colon). Among them, six compounds, 5g-j, 5m, and 5p, demonstrated effective antiproliferative action with GI50 values under 10 µM. Furthermore, density functional theory (DFT) calculations were performed for all the synthesized molecules through geometry optimizations, frontier molecular orbital approach, and molecular electrostatic potential (MESP). The theoretical DFT calculation was performed using the DFT/B3LYP/6-31+G (d,p) basis set. Moreover, the biological reactivity of all the representative synthesized molecules was compared with the theoretically calculated quantum chemical descriptors and MESP 3D plots. We also investigated the drug-likeness characteristic and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction. In general, our approach enables environmentally friendly access to 3-imidazolyl indole clubbed 1,2,3-triazole derivatives as prospective antiproliferative agents.


Subject(s)
Antineoplastic Agents , Microwaves , Female , Humans , Density Functional Theory , Prospective Studies , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , HeLa Cells , Indoles/pharmacology
14.
Mol Divers ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37935912

ABSTRACT

A new and efficient method has been developed to synthesize dispiro[oxindole/acenaphthylenone-benzofuranone]pyrrolidine compounds. This is done by triggering the 1,3-dipolar cycloaddition reaction of azomethine ylides by reacting isatin/acenaphthoquinone with L-picolinic acid/L-proline/sarcosine/L-thioproline/tetrahydroisoquinolines, in a highly regioselective manner in an ionic liquid [DBU][Ac] with 4'-chloro-auron[2-(4-chlorobenzylidene)benzofuran-3(2H)-one]. Single-crystal X-ray diffraction data support the proposed structures of the new compounds. The heterocycles derived from amino acids such as L-picolinic acid, L-proline, and L-thioproline showed significant inhibitory effects against six human solid tumors, including lung, breast, cervix, colon, and others. These new structures were also tested in the active sites of the MDM2 receptor to further study their antiproliferative effects.

15.
Nat Prod Res ; : 1-7, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37950735

ABSTRACT

Squalene-derived polyethers are a unique class of compounds that display a great diversity of structures and a broad array of bioactivities, among which its notable antiproliferative activity stands out against various types of cancer cell lines. In this study, eighteen triterpene squalene-derived polyethers, including twelve natural products and six synthetic derivatives, obtained from the red alga Laurencia viridis Gil-Rodríguez & Haroun were screened for their antiproliferative activity against six cancer cell lines: A549, HBL-100, HeLa, SW1573, T-47D, and WiDr; and a structure-activity relationship (SAR) study was established.

16.
ACS Biomater Sci Eng ; 9(9): 5186-5204, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37585807

ABSTRACT

This systematic review and meta-analysis focused on the effectiveness of biomaterials integrated with specific microRNAs (miRNAs) for bone fracture repair treatment. We conducted a comprehensive search of the PubMed, Web of Science, and Scopus databases, identifying 42 relevant papers up to March 2022. Hydrogel-based scaffolds were the most commonly used, incorporating miRNAs like miR-26a, miR-21, and miR-222, with miR-26a being the most prevalent. The meta-analysis revealed significant benefits of incorporating miRNAs into scaffolds for bone repair, particularly in hydrogel scaffolds. However, some controversies were observed among studies, presenting challenges in selecting appropriate miRNAs for this purpose. The study concludes that incorporating specific miRNAs into bone biomaterials enhances bone regeneration, but further trials comparing different biomaterials and miRNAs are necessary to validate their potential applications for bone tissue regeneration.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/therapeutic use , Biocompatible Materials/therapeutic use , Bone Regeneration/genetics , Hydrogels/therapeutic use , Computational Biology
17.
Bioorg Med Chem ; 92: 117417, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37531922

ABSTRACT

Salirasib, or farnesylthiosalicylic acid (FTS), is a salicylic acid derivative with demonstrated antineoplastic activity. While designed as a competitor of the substrate S-farnesyl cysteine on Ras, it is a potent competitive inhibitor of isoprenylcysteine carboxymethyl transferase. In this study, the antiproliferative activity on six different solid tumor cell lines was evaluated with a series of lipophilic thioether modified salirasib analogues, including those with or without a 1,2,3-triazole linker. A combination of bioassay, cheminformatics, docking, and in silico ADME-Tox was also performed. SAR analysis that analogues with three or more isoprene units or a long aliphatic chain exhibited the most potent activity. Furthermore, three compounds display superior antiproliferative activity than salirasib and similar potency compared to control anticancer drugs across all tested solid tumor cell lines. In addition, the behavior of the collection on migration and invasion, a key process in tumor metastasis, was also studied. Three analogues with specific antimigratory activity were identified with differential structural features being interesting starting points on the development of new antimetastatic agents. The antiproliferative and antimigratory effects observed suggest that modifying the thiol aliphatic/prenyl substituents can modulate the activity.


Subject(s)
Antineoplastic Agents , Antineoplastic Agents/pharmacology , Salicylates/pharmacology , Farnesol/pharmacology , Cell Line, Tumor , Cell Proliferation
18.
Dalton Trans ; 52(28): 9541-9545, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37404078

ABSTRACT

Complexes [{RuCp(PPh3)2-µ-dmoPTA-1κP:2κ2-N,N'-CuCl}2-µ-Cl-µ-OCH3](CF3SO3)2·(CH3OH)4 (1) and [{RuCp(PPh3)2-µ-dmoPTA-1κP:2κ2-N,N'-NiCl}2-µ-Cl-µ-OH](CF3SO3)2 (2) have been synthesized and characterized. Their antiproliferative activities were assessed against six human solid tumours showing nanomolar GI50 values. The effects of 1 and 2 on SW1573 cells colony formation, HeLa cells action mechanism and their interaction with the pBR322 DNA plasmid were evaluated.


Subject(s)
DNA , Humans , HeLa Cells
19.
Int J Mol Sci ; 24(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37298353

ABSTRACT

The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. Herein, a bicyclic carbohydrate-based hydrophilic tail (imidazolidine-2-thione) has been appended to a CA-targeting pharmacophore (arylsulfonamide, coumarin) with the aim of studying the influence of the conformational restriction of the tail on the CA inhibition. For this purpose, the coupling of sulfonamido- or coumarin-based isothiocyanates with reducing 2-aminosugars, followed by the sequential acid-promoted intramolecular cyclization of the corresponding thiourea and dehydration reactions, afforded the corresponding bicyclic imidazoline-2-thiones in good overall yield. The effects of the carbohydrate configuration, the position of the sulfonamido motif on the aryl fragment, and the tether length and substitution pattern on the coumarin were analysed in the in vitro inhibition of human CAs. Regarding sulfonamido-based inhibitors, the best template turned out to be a d-galacto-configured carbohydrate residue, meta-substitution on the aryl moiety (9b), with Ki against CA XII within the low nM range (5.1 nM), and remarkable selectivity indexes (1531 for CA I and 181.9 for CA II); this provided an enhanced profile in terms of potency and selectivity compared to more flexible linear thioureas 1-4 and the drug acetazolamide (AAZ), used herein as a reference compound. For coumarins, the strongest activities were found for substituents devoid of steric hindrance (Me, Cl), and short linkages; derivatives 24h and 24a were found to be the most potent inhibitors against CA IX and XII, respectively (Ki = 6.8, 10.1 nM), and also endowed with outstanding selectivity (Ki > 100 µM against CA I, II, as off-target enzymes). Docking simulations were conducted on 9b and 24h to gain more insight into the key inhibitor-enzyme interactions.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Molecular Structure , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Structure-Activity Relationship , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrases/metabolism , Antigens, Neoplasm , Coumarins/pharmacology , Coumarins/chemistry , Glycoconjugates , Carbohydrates
20.
Eur J Med Chem ; 255: 115390, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37137247

ABSTRACT

The unique electronic properties of the fluorine atom make its strategic incorporation into a bioactive compound a very useful tool in the design of drugs with optimized pharmacological properties. In the field of the carbohydrates, its selective installation at C2 position has proven particularly interesting, some 2-deoxy-2-fluorosugar derivatives being currently in the market. We have now transferred this feature into immunoregulatory glycolipid mimetics that contain a sp2-iminosugar moiety, namely sp2-iminoglycolipids (sp2-IGLs). The synthesis of two epimeric series of 2-deoxy-2-fluoro-sp2-IGLs, structurally related to nojirimycin and mannonojirimycin, has been accomplished by sequential Selectfluor-mediated fluorination and thioglycosidation of sp2-iminoglycals. Exclusively the α-anomer is obtained regardless of the configurational profile of the sp2-IGL (d-gluco or d-manno), highlighting the overwhelming anomeric effect in these prototypes. Notably, the combination of a fluorine atom at C2 and an α-oriented sulfonyl dodecyl lipid moiety in compound 11 led to remarkable anti-proliferative properties, featuring similar GI50 values than the chemotherapy drug Cisplatin against several tumor cell lines and better selectivity. The biochemical data further evidence a strong reduction of the number of tumor cell colonies and apoptosis induction. Mechanistic investigations revealed that this fluoro-sp2-IGL induces the non-canonical activation mode of the mitogen-activated protein kinase signaling pathway, causing p38α autoactivation under an inflammatory context.


Subject(s)
Carbohydrates , Fluorine , Fluorine/chemistry , Carbohydrates/chemistry , Glycolipids/chemistry , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL