Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769284

ABSTRACT

The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.


Subject(s)
Hedgehog Proteins , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Hedgehog Proteins/metabolism , Lymphopoiesis , T-Lymphocytes/metabolism , Signal Transduction/physiology
2.
Cancers (Basel) ; 15(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36765949

ABSTRACT

Small-cell lung cancer (SCLC) is the most aggressive lung cancer type, and is associated with smoking, low survival rate due to high vascularization, metastasis and drug resistance. Alterations in MYC family members are biomarkers of poor prognosis for a large number of SCLC. In particular, MYCN alterations define SCLC cases with immunotherapy failure. MYCN has a highly restricted pattern of expression in normal cells and is an ideal target for cancer therapy but is undruggable by traditional approaches. We propose an innovative approach to MYCN inhibition by an MYCN-specific antigene-PNA oligonucleotide (BGA002)-as a new precision medicine for MYCN-related SCLC. We found that BGA002 profoundly and specifically inhibited MYCN expression in SCLC cells, leading to cell-growth inhibition and apoptosis, while also overcoming multidrug resistance. These effects are driven by mTOR pathway block in concomitance with autophagy reactivation, thus avoiding the side effects of targeting mTOR in healthy cells. Moreover, we identified an MYCN-related SCLC gene signature comprehending CNTFR, DLX5 and TNFAIP3, that was reverted by BGA002. Finally, systemic treatment with BGA002 significantly increased survival in MYCN-amplified SCLC mouse models, including in a multidrug-resistant model in which tumor vascularization was also eliminated. These findings warrant the clinical testing of BGA002 in MYCN-related SCLC.

3.
Cells ; 11(11)2022 05 31.
Article in English | MEDLINE | ID: mdl-35681507

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and ß) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include ß-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10-15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin's lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.


Subject(s)
Glycogen Synthase Kinase 3 , Hematologic Neoplasms , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases
4.
J Exp Clin Cancer Res ; 41(1): 160, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35490242

ABSTRACT

BACKGROUND: Neuroblastoma is a deadly childhood cancer, and MYCN-amplified neuroblastoma (MNA-NB) patients have the worst prognoses and are therapy-resistant. While retinoic acid (RA) is beneficial for some neuroblastoma patients, the cause of RA resistance is unknown. Thus, there remains a need for new therapies to treat neuroblastoma. Here we explored the possibility of combining a MYCN-specific antigene oligonucleotide BGA002 and RA as therapeutic approach to restore sensitivity to RA in NB. METHODS: By molecular and cellular biology techniques, we assessed the combined effect of the two compounds in NB cell lines and in a xenograft mouse model MNA-NB. RESULTS: We found that MYCN-specific inhibition by BGA002 in combination with RA (BGA002-RA) act synergistically and overcame resistance in NB cell lines. BGA002-RA also reactivated neuron differentiation (or led to apoptosis) and inhibited invasiveness capacity in MNA-NB. Moreover, we found that neuroblastoma had the highest level of mRNA expression of mTOR pathway genes, and that BGA002 led to mTOR pathway inhibition followed by autophagy reactivation in MNA-NB cells, which was strengthened by BGA002-RA. BGA002-RA in vivo treatment also eliminated tumor vascularization in a MNA-NB mouse model and significantly increased survival. CONCLUSION: Taken together, MYCN modulation mediates the therapeutic efficacy of RA and the development of RA resistance in MNA-NB. Furthermore, by targeting MYCN, a cancer-specific mTOR pathway inhibition occurs only in MNA-NB, thus avoiding the side effects of targeting mTOR in normal cells. These findings warrant clinical testing of BGA002-RA as a strategy for overcoming RA resistance in MNA-NB.


Subject(s)
Neuroblastoma , Tretinoin , Animals , Child , Humans , Mice , Apoptosis , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , TOR Serine-Threonine Kinases , Tretinoin/pharmacology , Tretinoin/therapeutic use
5.
Cell Death Dis ; 13(4): 346, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35422060

ABSTRACT

Lamin A, a main constituent of the nuclear lamina, is involved in mechanosignaling and cell migration through dynamic interactions with the LINC complex, formed by the nuclear envelope proteins SUN1, SUN2 and the nesprins. Here, we investigated lamin A role in Ewing Sarcoma (EWS), an aggressive bone tumor affecting children and young adults. In patients affected by EWS, we found a significant inverse correlation between LMNA gene expression and tumor aggressiveness. Accordingly, in experimental in vitro models, low lamin A expression correlated with enhanced cell migration and invasiveness and, in vivo, with an increased metastatic load. At the molecular level, this condition was linked to altered expression and anchorage of nuclear envelope proteins and increased nuclear retention of YAP/TAZ, a mechanosignaling effector. Conversely, overexpression of lamin A rescued LINC complex organization, thus reducing YAP/TAZ nuclear recruitment and preventing cell invasiveness. These effects were also obtained through modulation of lamin A maturation by a statin-based pharmacological treatment that further elicited a more differentiated phenotype in EWS cells. These results demonstrate that drugs inducing nuclear envelope remodeling could be exploited to improve therapeutic strategies for EWS.


Subject(s)
Nuclear Envelope , Sarcoma, Ewing , Humans , Lamin Type A/genetics , Lamin Type A/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism
6.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34959725

ABSTRACT

The AHCC standardized extract of cultured Lentinula edodes mycelia, and the standardized extract of Asparagus officinalis stem, trademarked as ETAS, are well known supplements with immunomodulatory and anticancer potential. Several reports have described their therapeutic effects, including antioxidant and anticancer activity and improvement of immune response. In this study we aimed at investigating the effects of a combination of AHCC and ETAS on colorectal cancer cells and biopsies from healthy donors to assess the possible use in patients with colorectal cancer. Our results showed that the combination of AHCC and ETAS was synergistic in inducing a significant decrease in cancer cell growth, compared with single agents. Moreover, the combined treatment induced a significant increase in apoptosis, sparing colonocytes from healthy donors, and was able to induce a strong reduction in migration potential, accompanied by a significant modulation of proteins involved in invasiveness. Finally, combined treatment was able to significantly downregulate LGR5 and Notch1 in SW620 cancer stem cell (CSC) colonospheres. Overall, these findings support the potential therapeutic benefits of the AHCC and ETAS combinatorial treatment for patients with colorectal cancer.

7.
Leukemia ; 35(7): 1829-1842, 2021 07.
Article in English | MEDLINE | ID: mdl-33811246

ABSTRACT

Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and ß) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., ß-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Leukemia/metabolism , Animals , Humans , Protein Isoforms/metabolism , Signal Transduction/physiology
8.
Cancers (Basel) ; 12(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255367

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic malignancy that arises from the clonal expansion of transformed B-cell precursors and predominately affects childhood. Even though significant progresses have been made in the treatment of B-ALL, pediatric patients' outcome has to be furtherly increased and alternative targeted treatment strategies are required for younger patients. Over the last decade, novel approaches have been used to understand the genomic landscape and the complexity of the molecular biology of pediatric B-ALL, mainly next generation sequencing, offering important insights into new B-ALL subtypes, altered pathways, and therapeutic targets that may lead to improved risk stratification and treatments. Here, we will highlight the up-to-date knowledge of the novel B-ALL subtypes in childhood, with particular emphasis on altered signaling pathways. In addition, we will discuss the targeted therapies that showed promising results for the treatment of the different B-ALL subtypes.

9.
Cells ; 9(3)2020 03 22.
Article in English | MEDLINE | ID: mdl-32235738

ABSTRACT

A type lamins are fundamental components of the nuclear lamina. Changes in lamin A expression correlate with malignant transformation in several cancers. However, the role of lamin A has not been explored in osteosarcoma (OS). Here, we wanted to investigate the role of lamin A in normal osteoblasts (OBs) and OS cells. Thus, we studied the expression of lamin A/C in OS cells compared to OBs and evaluated the effects of lamin A overexpression in OS cell lines. We show that, while lamin A expression increases during osteoblast differentiation, all examined OS cell lines express lower lamin A levels relative to differentiated OBs. The condition of low LMNA expression confers to OS cells a significant increase in migration potential, while overexpression of lamin A reduces migration ability of OS cells. Moreover, overexpression of unprocessable prelamin A also reduces cell migration. In agreement with the latter finding, OS cells which accumulate the highest prelamin A levels upon inhibition of lamin A maturation by statins, had significantly reduced migration ability. Importantly, OS cells subjected to statin treatment underwent apoptotic cell death in a RAS-independent, lamin A-dependent manner. Our results show that pro-apoptotic effects of statins and statin inhibitory effect on OS cell migration are comparable to those obtained by prelamin A accumulation and further suggest that modulation of lamin A expression and post-translational processing can be a tool to decrease migration potential in OS cells.


Subject(s)
Cell Movement , Lamin Type A/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , Lovastatin/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/pathology
10.
Int J Mol Sci ; 21(3)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046053

ABSTRACT

Acute lymphoblastic leukemia (ALL) is an aggressive hematologic neoplastic disorder that arises from the clonal expansion of transformed T-cell or B-cell precursors. Thanks to progress in chemotherapy protocols, ALL outcome has significantly improved. However, drug-resistance remains an unresolved issue in the treatment of ALL and toxic effects limit dose escalation of current chemotherapeutics. Therefore, the identification of novel targeted therapies to support conventional chemotherapy is required. The Wnt/ß-catenin pathway is a conserved signaling axis involved in several physiological processes such as development, differentiation, and adult tissue homeostasis. As a result, deregulation of this cascade is closely related to initiation and progression of various types of cancers, including hematological malignancies. In particular, deregulation of this signaling network is involved in the transformation of healthy HSCs in leukemic stem cells (LSCs), as well as cancer cell multi-drug-resistance. This review highlights the recent findings on the role of Wnt/ß-catenin in hematopoietic malignancies and provides information on the current status of Wnt/ß-catenin inhibitors with respect to their therapeutic potential in the treatment of ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Wnt Signaling Pathway , Animals , Hematopoiesis , Humans , Molecular Targeted Therapy/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
11.
Cancers (Basel) ; 12(2)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32024211

ABSTRACT

The unfolded protein response (UPR) is an evolutionarily conserved adaptive response triggered by the stress of the endoplasmic reticulum (ER) due, among other causes, to altered cell protein homeostasis (proteostasis). UPR is mediated by three main sensors, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6α (ATF6α), and inositol-requiring enzyme-1α (IRE1α). Given that proteostasis is frequently disregulated in cancer, UPR is emerging as a critical signaling network in controlling the survival, selection, and adaptation of a variety of neoplasias, including breast cancer, prostate cancer, colorectal cancer, and glioblastoma. Indeed, cancer cells can escape from the apoptotic pathways elicited by ER stress by switching UPR into a prosurvival mechanism instead of cell death. Although most of the studies on UPR focused on solid tumors, this intricate network plays a critical role in hematological malignancies, and especially in multiple myeloma (MM), where treatment with proteasome inhibitors induce the accumulation of unfolded proteins that severely perturb proteostasis, thereby leading to ER stress, and, eventually, to apoptosis. However, UPR is emerging as a key player also in acute leukemias, where recent evidence points to the likelihood that targeting UPR-driven prosurvival pathways could represent a novel therapeutic strategy. In this review, we focus on the oncogene-specific regulation of individual UPR signaling arms, and we provide an updated outline of the genetic, biochemical, and preclinical therapeutic findings that support UPR as a relevant, novel target in acute leukemias.

12.
J Cell Physiol ; 235(6): 5413-5428, 2020 06.
Article in English | MEDLINE | ID: mdl-31904116

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disorder that results from the clonal transformation of T-cell precursors. Phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) and canonical Wnt/ß-catenin signaling pathways play a crucial role in T-cell development and in self-renewal of healthy and leukemic stem cells. Notably, ß-catenin is a transcriptional regulator of several genes involved in cancer cell proliferation and survival. In this way, aberrations of components belonging to the aforementioned networks contribute to T-ALL pathogenesis. For this reason, inhibition of both pathways could represent an innovative strategy in this hematological malignancy. Here, we show that combined targeting of Wnt/ß-catenin pathway through ICG-001, a CBP/ß-catenin transcription inhibitor, and of the PI3K/Akt/mTOR axis through ZSTK-474, a PI3K inhibitor, downregulated proliferation, survival, and clonogenic activity of T-ALL cells. ICG-001 and ZSTK-474 displayed cytotoxic effects, and, when combined together, induced a significant increase in apoptotic cells. This induction of apoptosis was associated with the downregulation of Wnt/ß-catenin and PI3K/Akt/mTOR pathways. All these findings were confirmed under hypoxic conditions that mimic the bone marrow niche where leukemic stem cells are believed to reside. Taken together, our findings highlight potentially promising treatment consisting of cotargeting Wnt/ß-catenin and PI3K/Akt/mTOR pathways in T-ALL settings.


Subject(s)
Cell Proliferation/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , T-Lymphocytes/drug effects , beta Catenin/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Pyrimidinones/pharmacology , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/genetics , Triazines/pharmacology , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics , beta Catenin/antagonists & inhibitors
13.
Biochim Biophys Acta Mol Cell Res ; 1867(4): 118635, 2020 04.
Article in English | MEDLINE | ID: mdl-31884070

ABSTRACT

The introduction of therapeutics targeting specific tumor-promoting oncogenic or non-oncogenic signaling pathways has revolutionized cancer treatment. Mechanistic (previously mammalian) target of rapamycin (mTOR), a highly conserved Ser/Thr kinase, is a central hub of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR network, one of the most frequently deregulated signaling pathways in cancer, that makes it an attractive target for therapy. Numerous mTOR inhibitors have progressed to clinical trials and two of them have been officially approved as anticancer therapeutics. However, mTOR-targeting drugs have met with a very limited success in cancer patients. Frequently, the primary impediment to a successful targeted therapy in cancer is drug-resistance, either from the very beginning of the therapy (innate resistance) or after an initial response and upon repeated drug treatment (evasive or acquired resistance). Drug-resistance leads to treatment failure and relapse/progression of the disease. Resistance to mTOR inhibitors depends, among other reasons, on activation/deactivation of several signaling pathways, included those regulated by glycogen synthase kinase-3 (GSK3), a protein that targets a vast number of substrates in its repertoire, thereby orchestrating many processes that include cell proliferation and survival, metabolism, differentiation, and stemness. A detailed knowledge of the rewiring of signaling pathways triggered by exposure to mTOR inhibitors is critical to our understanding of the consequences such perturbations cause in tumors, including the emergence of drug-resistant cells. Here, we provide the reader with an updated overview of intricate circuitries that connect mTOR and GSK3 and we relate them to the efficacy (or lack of efficacy) of mTOR inhibitors in cancer cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Glycogen Synthase Kinase 3/metabolism , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Humans , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors
14.
Adv Biol Regul ; 74: 100649, 2019 12.
Article in English | MEDLINE | ID: mdl-31523031

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disorder characterized by malignant transformation of immature progenitors primed towards T-cell development. Over the past 15 years, advances in the molecular characterization of T-ALL have uncovered oncogenic key drivers and crucial signaling pathways of this disease, opening new chances for the development of novel therapeutic strategies. Currently, T-ALL patients are still treated with aggressive therapies, consisting of high dose multiagent chemotherapy. To minimize and overcome the unfavorable effects of these regimens, it is critical to identify innovative targets and test selective inhibitors of such targets. Major efforts are being made to develop small molecules against deregulated signaling pathways, which sustain T-ALL cell growth, survival, metabolism, and drug-resistance. This review will focus on recent improvements in the understanding of the signaling pathways involved in the pathogenesis of T-ALL and on the challenging opportunities for T-ALL targeted therapies.


Subject(s)
Cell Differentiation/genetics , Cell Transformation, Neoplastic , Drug Resistance, Neoplasm/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Signal Transduction/genetics , T-Lymphocytes , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
15.
Cancers (Basel) ; 11(5)2019 May 06.
Article in English | MEDLINE | ID: mdl-31064074

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10-15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.

16.
Int J Mol Sci ; 20(4)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30781376

ABSTRACT

The mechanistic target of rapamycin (mTOR) is a ubiquitous serine/threonine kinase that regulates anabolic and catabolic processes, in response to environmental inputs. The existence of mTOR in numerous cell compartments explains its specific ability to sense stress, execute growth signals, and regulate autophagy. mTOR signaling deregulation is closely related to aging and age-related disorders, among which progeroid laminopathies represent genetically characterized clinical entities with well-defined phenotypes. These diseases are caused by LMNA mutations and feature altered bone turnover, metabolic dysregulation, and mild to severe segmental progeria. Different LMNA mutations cause muscular, adipose tissue and nerve pathologies in the absence of major systemic involvement. This review explores recent advances on mTOR involvement in progeroid and tissue-specific laminopathies. Indeed, hyper-activation of protein kinase B (AKT)/mTOR signaling has been demonstrated in muscular laminopathies, and rescue of mTOR-regulated pathways increases lifespan in animal models of Emery-Dreifuss muscular dystrophy. Further, rapamycin, the best known mTOR inhibitor, has been used to elicit autophagy and degradation of mutated lamin A or progerin in progeroid cells. This review focuses on mTOR-dependent pathogenetic events identified in Emery-Dreifuss muscular dystrophy, LMNA-related cardiomyopathies, Hutchinson-Gilford Progeria, mandibuloacral dysplasia, and type 2 familial partial lipodystrophy. Pharmacological application of mTOR inhibitors in view of therapeutic strategies is also discussed.


Subject(s)
Lamins/metabolism , Muscular Dystrophies/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Humans , Models, Biological
17.
Cell Microbiol ; 10(10): 2129-37, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18647312

ABSTRACT

A purified microbial capsular polysaccharide of Cryptococcus neoformans, glucuronoxylomannan (GXM), induces Fas ligand (FasL) upregulation on macrophages and, as a consequence, apoptosis of lymphocytes. The mechanisms that lead to lymphocyte apoptosis in both in vitro and in vivo systems were investigated by cytofluorimetric analysis and Western blotting experiments. Caspase 8 cleaves caspase 3 in two different pathways: directly as well as indirectly by activation of Bcl-2 interacting domain, which initiates caspase 9 cleavage. Therefore, the caspase 8 and caspase 9 pathways cooperate in an amplification loop for efficient cell death, and noteworthily we provide evidence that they are both activated in one single cell. Furthermore, both activation of GXM-mediated caspase 8 and apoptosis were also found in in vivo systems in an experimental model of murine candidiasis. Collectively, our data show that GXM-induced apoptosis involves, in a single cell, a cross-talk between extrinsic and intrinsic pathways. Such a finding offers opportunities for the therapeutic usage of this polysaccharide in appropriate clinical settings for taming T-cell responses.


Subject(s)
Apoptosis , Cryptococcus neoformans/immunology , Polysaccharides/immunology , Animals , Candidiasis/immunology , Caspase 8/metabolism , Caspases/metabolism , Female , Humans , Jurkat Cells , Mice , Models, Biological , Proto-Oncogene Proteins c-bcl-2/metabolism
18.
J Immunol ; 177(10): 6842-51, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17082598

ABSTRACT

A microbial polysaccharide (glucuronoxylomannan (GXM)) exerts potent immunosuppression by direct engagement to immunoinhibitory receptor FcgammaRIIB. Activation of FcgammaRIIB by GXM leads to the recruitment and phosphorylation of SHIP that prevents IkappaBalpha activation. The FcgammaRIIB blockade inhibits GXM-induced IL-10 production and induces TNF-alpha secretion. GXM quenches LPS-induced TNF-alpha release via FcgammaRIIB. The addition of mAb to GXM reverses GXM-induced immunosuppression by shifting recognition from FcgammaRIIB to FcgammaRIIA. These findings indicate a novel mechanism by which microbial products can impair immune function through direct stimulation of an inhibitory receptor. Furthermore, our observations provide a new mechanism for the ability of specific Ab to reverse the immune inhibitory effects of certain microbial products.


Subject(s)
Antibodies, Monoclonal/metabolism , Antigens, CD/metabolism , Immunosuppressive Agents/antagonists & inhibitors , Immunosuppressive Agents/pharmacology , Polysaccharides/antagonists & inhibitors , Polysaccharides/immunology , Receptors, IgG/metabolism , Antibodies, Monoclonal/physiology , Antigens, CD/physiology , Cell Line , Cryptococcus neoformans/immunology , Humans , I-kappa B Proteins/antagonists & inhibitors , I-kappa B Proteins/metabolism , Immunosuppressive Agents/metabolism , Inositol Polyphosphate 5-Phosphatases , Interleukin-10/antagonists & inhibitors , Interleukin-10/biosynthesis , Interleukin-10/metabolism , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , NF-KappaB Inhibitor alpha , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Polysaccharides/metabolism , Receptors, IgG/physiology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...