Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Nat Commun ; 15(1): 7016, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147754

ABSTRACT

Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method, we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. The technology is benchmarked to other state-of-the-art MS platforms using both synthetic peptide standards and with EGF-stimulated HeLa cells. We apply this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detect 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence, structural, and kinase specificity context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of phosphorylation events relevant to mitochondrial and brain biology.


Subject(s)
Mass Spectrometry , Phosphoproteins , Proteome , Proteomics , Humans , Phosphoproteins/metabolism , Phosphoproteins/analysis , Animals , HeLa Cells , Phosphorylation , Mice , Proteome/metabolism , Mass Spectrometry/methods , Proteomics/methods
2.
JCI Insight ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078710

ABSTRACT

Congenital myasthenic syndrome-22 (CMS22, OMIM 616224) is a rare genetic disorder caused by deleterious genetic variation in the prolyl endopeptidase-like (PREPL) gene. Previous reports have described patients with deletions and nonsense variants in PREPL, but nothing is known about the effect of missense variants in the pathology of CMS22. In this study, we have functionally characterized missense variants in PREPL from three CMS22 patients, all with hallmark phenotypes. Biochemical evaluation revealed that these missense variants do not impair hydrolase activity, thereby challenging the conventional diagnostic criteria and disease mechanism. Structural analysis showed that the variants affect regions most likely involved in intra-protein or protein-protein interactions. Indeed, binding to a selected group of known interactors was differentially reduced for the three mutants. The importance of non-hydrolytic functions of PREPL was investigated in catalytically inactive PREPL p.Ser559Ala cell lines which showed that hydrolytic activity of PREPL is needed for normal mitochondrial function but not for regulating AP1-mediated transport in the trans-Golgi network. In conclusion, these studies showed that CMS22 can be caused not only by deletion and truncation of PREPL but also by missense variants that do not necessarily result in a loss of hydrolytic activity of PREPL.

3.
Nat Metab ; 6(6): 1128-1142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720117

ABSTRACT

Isolated complex I (CI) deficiencies are a major cause of primary mitochondrial disease. A substantial proportion of CI deficiencies are believed to arise from defects in CI assembly factors (CIAFs) that are not part of the CI holoenzyme. The biochemistry of these CIAFs is poorly defined, making their role in CI assembly unclear, and confounding interpretation of potential disease-causing genetic variants. To address these challenges, we devised a deep mutational scanning approach to systematically assess the function of thousands of NDUFAF6 genetic variants. Guided by these data, biochemical analyses and cross-linking mass spectrometry, we discovered that the CIAF NDUFAF6 facilitates incorporation of NDUFS8 into CI and reveal that NDUFS8 overexpression rectifies NDUFAF6 deficiency. Our data further provide experimental support of pathogenicity for seven novel NDUFAF6 variants associated with human pathology and introduce functional evidence for over 5,000 additional variants. Overall, our work defines the molecular function of NDUFAF6 and provides a clinical resource for aiding diagnosis of NDUFAF6-related diseases.


Subject(s)
Electron Transport Complex I , Mitochondrial Diseases , Mitochondrial Proteins , Humans , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation , Mitochondria/metabolism , Mitochondria/genetics
4.
J Biol Chem ; 300(5): 107269, 2024 May.
Article in English | MEDLINE | ID: mdl-38588811

ABSTRACT

Coenzyme Q10 (CoQ10) is an important cofactor and antioxidant for numerous cellular processes, and its deficiency has been linked to human disorders including mitochondrial disease, heart failure, Parkinson's disease, and hypertension. Unfortunately, treatment with exogenous CoQ10 is often ineffective, likely due to its extreme hydrophobicity and high molecular weight. Here, we show that less hydrophobic CoQ species with shorter isoprenoid tails can serve as viable substitutes for CoQ10 in human cells. We demonstrate that CoQ4 can perform multiple functions of CoQ10 in CoQ-deficient cells at markedly lower treatment concentrations, motivating further investigation of CoQ4 as a supplement for CoQ10 deficiencies. In addition, we describe the synthesis and evaluation of an initial set of compounds designed to target CoQ4 selectively to mitochondria using triphenylphosphonium. Our results indicate that select versions of these compounds can successfully be delivered to mitochondria in a cell model and be cleaved to produce CoQ4, laying the groundwork for further development.


Subject(s)
Ataxia , Mitochondria , Mitochondrial Diseases , Muscle Weakness , Ubiquinone , Humans , Mitochondria/enzymology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Muscle Weakness/enzymology , Muscle Weakness/genetics , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Hep G2 Cells
5.
bioRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352460

ABSTRACT

Inter-organellar communication is critical for cellular metabolic homeostasis. One of the most abundant inter-organellar interactions are those at the endoplasmic reticulum and mitochondria contact sites (ERMCS). However, a detailed understanding of the mechanisms governing ERMCS regulation and their roles in cellular metabolism are limited by a lack of tools that permit temporal induction and reversal. Through unbiased screening approaches, we identified fedratinib, an FDA-approved drug, that dramatically increases ERMCS abundance by inhibiting the epigenetic modifier BRD4. Fedratinib rapidly and reversibly modulates mitochondrial and ER morphology and alters metabolic homeostasis. Moreover, ERMCS modulation depends on mitochondria electron transport chain complex III function. Comparison of fedratinib activity to other reported inducers of ERMCS revealed common mechanisms of induction and function, providing clarity and union to a growing body of experimental observations. In total, our results uncovered a novel epigenetic signaling pathway and an endogenous metabolic regulator that connects ERMCS and cellular metabolism.

6.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260250

ABSTRACT

Fatty acid ß-oxidation (FAO) is a central catabolic pathway with broad implications for organismal health. However, various fatty acids are largely incompatible with standard FAO machinery until they are modified by other enzymes. Included among these are the 4-hydroxy acids (4-HAs)-fatty acids hydroxylated at the 4 (γ) position-which can be provided from dietary intake, lipid peroxidation, and certain drugs of abuse. Here, we reveal that two atypical and poorly characterized acyl-CoA dehydrogenases (ACADs), ACAD10 and ACAD11, drive 4-HA catabolism in mice. Unlike other ACADs, ACAD10 and ACAD11 feature kinase domains N-terminal to their ACAD domains that phosphorylate the 4-OH position as a requisite step in the conversion of 4-hydroxyacyl-CoAs into 2-enoyl-CoAs-conventional FAO intermediates. Our ACAD11 cryo-EM structure and molecular modeling reveal a unique binding pocket capable of accommodating this phosphorylated intermediate. We further show that ACAD10 is mitochondrial and necessary for catabolizing shorter-chain 4-HAs, whereas ACAD11 is peroxisomal and enables longer-chain 4-HA catabolism. Mice lacking ACAD11 accumulate 4-HAs in their plasma while comparable 3- and 5-hydroxy acids remain unchanged. Collectively, this work defines ACAD10 and ACAD11 as the primary gatekeepers of mammalian 4-HA catabolism and sets the stage for broader investigations into the ramifications of aberrant 4-HA metabolism in human health and disease.

7.
Mol Cell ; 84(5): 981-989.e7, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38295803

ABSTRACT

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role but also via the oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis and shed light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.


Subject(s)
Eukaryotic Cells , Ubiquinone , Humans , Decarboxylation , Eukaryotic Cells/metabolism , Oxidation-Reduction , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidative Stress , Mitochondrial Proteins/metabolism
8.
Nat Rev Mol Cell Biol ; 25(1): 65-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773518

ABSTRACT

Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.


Subject(s)
Mitochondrial Diseases , Proteome , Animals , Humans , Proteome/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Organelles/metabolism , Mitochondrial Diseases/metabolism , Mass Spectrometry , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mammals/metabolism
9.
Nat Chem Biol ; 20(2): 132-133, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37884804
10.
bioRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38045259

ABSTRACT

Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. We applied this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detected 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence and structural context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of novel phosphorylation events relevant to mitochondrial and brain biology.

11.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014142

ABSTRACT

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role, but also via oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis, and shed new light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.

12.
Nat Cell Biol ; 25(11): 1616-1624, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813972

ABSTRACT

Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor composed of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for haem biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p failed to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enabled robust IPP uptake and incorporation into the CoQ biosynthetic pathway. HEM25 orthologues from diverse fungi, but not from metazoans, were able to rescue hem25∆ CoQ deficiency. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in fungi.


Subject(s)
Mitochondrial Diseases , Saccharomyces cerevisiae Proteins , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ataxia/genetics , Ataxia/metabolism , Mitochondria/metabolism , Ubiquinone/genetics , Ubiquinone/metabolism
13.
Nat Commun ; 14(1): 6431, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833277

ABSTRACT

PPTC7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass and metabolic capacity with elevated hepatic triglyceride accumulation. Pptc7 knockout animals exhibit increased expression of the mitophagy receptors BNIP3 and NIX, and Pptc7-/- mouse embryonic fibroblasts (MEFs) display a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs, including multiple sites on BNIP3 and NIX, and our molecular studies demonstrate that PPTC7 can directly interact with and dephosphorylate these proteins. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that PPTC7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for PPTC7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.


Subject(s)
Mitochondrial Proteins , Mitophagy , Animals , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitophagy/genetics , Fibroblasts/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Phosphoric Monoester Hydrolases/metabolism
14.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425714

ABSTRACT

Background: Statins are the drugs most commonly used for lowering plasma low-density lipoprotein (LDL) cholesterol levels and reducing cardiovascular disease risk. Although generally well tolerated, statins can induce myopathy, a major cause of non-adherence to treatment. Impaired mitochondrial function has been implicated as a cause of statin-induced myopathy, but the underlying mechanism remains unclear. We have shown that simvastatin downregulates transcription of TOMM40 and TOMM22 , genes that encode major subunits of the translocase of outer mitochondrial membrane (TOM) complex which is responsible for importing nuclear-encoded proteins and maintaining mitochondrial function. We therefore investigated the role of TOMM40 and TOMM22 in mediating statin effects on mitochondrial function, dynamics, and mitophagy. Methods: Cellular and biochemical assays and transmission electron microscopy were used to investigate effects of simvastatin and TOMM40 and TOMM22 expression on measures of mitochondrial function and dynamics in C2C12 and primary human skeletal cell myotubes. Results: Knockdown of TOMM40 and TOMM22 in skeletal cell myotubes impaired mitochondrial oxidative function, increased production of mitochondrial superoxide, reduced mitochondrial cholesterol and CoQ levels, disrupted mitochondrial dynamics and morphology, and increased mitophagy, with similar effects resulting from simvastatin treatment. Overexpression of TOMM40 and TOMM22 in simvastatin-treated muscle cells rescued statin effects on mitochondrial dynamics, but not on mitochondrial function or cholesterol and CoQ levels. Moreover, overexpression of these genes resulted in an increase in number and density of cellular mitochondria. Conclusion: These results confirm that TOMM40 and TOMM22 are central in regulating mitochondrial homeostasis and demonstrate that downregulation of these genes by statin treatment mediates disruption of mitochondrial dynamics, morphology, and mitophagy, effects that may contribute to statin-induced myopathy.

15.
bioRxiv ; 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37503166

ABSTRACT

Coenzyme Q 10 (CoQ 10 ) is an important cofactor and antioxidant for numerous cellular processes, and its deficiency has been linked to human disorders including mitochondrial disease, heart failure, Parkinson's disease, and hypertension. Unfortunately, treatment with exogenous oral CoQ 10 is often ineffective, likely due to the extreme hydrophobicity and high molecular weight of CoQ 10 . Here, we show that less hydrophobic CoQ species with shorter isoprenoid tails can serve as viable substitutes for CoQ 10 in human cells. We demonstrate that CoQ 4 can perform multiple functions of CoQ 10 in CoQ-deficient cells at markedly lower treatment concentrations, motivating further investigation of CoQ 4 as a supplement for CoQ 10 deficiencies. In addition, we describe the synthesis and evaluation of an initial set of compounds designed to target CoQ 4 selectively to mitochondria using triphenylphosphonium (TPP). Our results indicate that select versions of these compounds can successfully be delivered to mitochondria in a cell model and be cleaved to produce CoQ 4 , laying the groundwork for further development.

16.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909604

ABSTRACT

Pptc7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass concomitant with elevation of the mitophagy receptors Bnip3 and Nix. Consistently, Pptc7-/- mouse embryonic fibroblasts (MEFs) exhibit a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs-including multiple sites on Bnip3 and Nix. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that Pptc7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for Pptc7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.

17.
bioRxiv ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993473

ABSTRACT

Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor comprised of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing, and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for heme biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p fail to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enables robust IPP uptake demonstrating that Hem25p is sufficient for IPP transport. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in yeast.

18.
J Biol Chem ; 299(3): 102981, 2023 03.
Article in English | MEDLINE | ID: mdl-36739946

ABSTRACT

Chalcone isomerases (CHIs) have well-established roles in the biosynthesis of plant flavonoid metabolites. Saccharomyces cerevisiae possesses two predicted CHI-like proteins, Aim18p (encoded by YHR198C) and Aim46p (YHR199C), but it lacks other enzymes of the flavonoid pathway, suggesting that Aim18p and Aim46p employ the CHI fold for distinct purposes. Here, we demonstrate using proteinase K protection assays, sodium carbonate extractions, and crystallography that Aim18p and Aim46p reside on the mitochondrial inner membrane and adopt CHI folds, but they lack select active site residues and possess an extra fungal-specific loop. Consistent with these differences, Aim18p and Aim46p lack CHI activity and also the fatty acid-binding capabilities of other CHI-like proteins, but instead bind heme. We further show that diverse fungal homologs also bind heme and that Aim18p and Aim46p possess structural homology to a bacterial hemoprotein. Collectively, our work reveals a distinct function and cellular localization for two CHI-like proteins, introduces a new variation of a hemoprotein fold, and suggests that ancestral CHI-like proteins were hemoproteins.


Subject(s)
Intramolecular Lyases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Flavonoids/metabolism , Intramolecular Lyases/chemistry , Intramolecular Lyases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
19.
Trends Biochem Sci ; 48(5): 463-476, 2023 05.
Article in English | MEDLINE | ID: mdl-36702698

ABSTRACT

Coenzyme Q (CoQ) is a remarkably hydrophobic, redox-active lipid that empowers diverse cellular processes. Although most known for shuttling electrons between mitochondrial electron transport chain (ETC) complexes, the roles for CoQ are far more wide-reaching and ever-expanding. CoQ serves as a conduit for electrons from myriad pathways to enter the ETC, acts as a cofactor for biosynthetic and catabolic reactions, detoxifies damaging lipid species, and engages in cellular signaling and oxygen sensing. Many open questions remain regarding the biosynthesis, transport, and metabolism of CoQ, which hinders our ability to treat human CoQ deficiency. Here, we recount progress in filling these knowledge gaps, highlight unanswered questions, and underscore the need for novel tools to enable discoveries and improve the treatment of CoQ-related diseases.


Subject(s)
Mitochondrial Diseases , Ubiquinone , Humans , Ubiquinone/metabolism , Mitochondrial Diseases/metabolism , Oxidation-Reduction , Ataxia/metabolism , Lipids
20.
Nat Chem Biol ; 19(3): 265-274, 2023 03.
Article in English | MEDLINE | ID: mdl-36266351

ABSTRACT

Pyruvate dehydrogenase complex (PDHC) and oxoglutarate dehydrogenase complex (OGDC), which belong to the mitochondrial α-ketoacid dehydrogenase family, play crucial roles in cellular metabolism. These multi-subunit enzyme complexes use lipoic arms covalently attached to their E2 subunits to transfer an acyl group to coenzyme A (CoA). Here, we report a novel mechanism capable of substantially inhibiting PDHC and OGDC: reactive nitrogen species (RNS) can covalently modify the thiols on their lipoic arms, generating a series of adducts that block catalytic activity. S-Nitroso-CoA, a product between RNS and the E2 subunit's natural substrate, CoA, can efficiently deliver these modifications onto the lipoic arm. We found RNS-mediated inhibition of PDHC and OGDC occurs during classical macrophage activation, driving significant rewiring of cellular metabolism over time. This work provides a new mechanistic link between RNS and mitochondrial metabolism with potential relevance for numerous physiological and pathological conditions in which RNS accumulate.


Subject(s)
Arm , Nitric Oxide , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) , Pyruvate Dehydrogenase Complex/metabolism , Multienzyme Complexes
SELECTION OF CITATIONS
SEARCH DETAIL