Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Vis Exp ; (181)2022 03 05.
Article in English | MEDLINE | ID: mdl-35311823

ABSTRACT

Quantitative assessment of cellular forces and motion advanced considerably over the last four decades. These advancements provided the framework to examine insightful mechanical signaling processes in cell culture systems. However, the field currently faces three problems: lack of quality standardization of the acquired data, technical errors in data analysis and visualization, and perhaps most importantly, the technology remains largely out of reach for common cell biology laboratories. To overcome these limitations, we developed a new experimental platform - Integrative Toolkit to Analyze Cellular Signals (iTACS). iTACS consists of two components: Acquisition and Training Module (AcTrM) and Analysis and Visualization Module (AnViM). AcTrM is based on µManager - an NIH-ImageJ-based microscope control software - and facilitates user self-training and automation of common image acquisition protocols. AnViM is based on NIH-ImageJ and facilitates user-friendly automation of data analysis and insightful visualization of results. These experiments involve culturing adherent cells on hydrogels, imaging fiducial markers embedded in the hydrogel, and finally extracting from these images a comprehensive mechanical characterization of the cells. Currently, iTACS enables the user to analyze and track a wide array of properties, including morphology, motion, cytoskeletal forces, and fluorescence of individual cells and their neighboring region. The quality standardization issue was addressed in AcTrM with, a reference image-guided refocusing technique. The technical issues in data analysis were addressed in AnViM with a multi-pronged image segmentation procedure, a user-friendly approach to identify boundary conditions, and a novel cellular property-based data visualization. AcTrM is designed to facilitate the straightforward transformation of basic fluorescence microscopes into experimental cell mechanics rigs, and AnViM is equipped to enable users to measure cellular mechanical signals without requiring an engineering background. iTACS will be available to the research community as an open-source suite with community-driven development capabilities.


Subject(s)
Data Visualization , Software , Automation , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods
2.
ACS Omega ; 6(35): 22857-22865, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34514257

ABSTRACT

In this work, a computationally efficient nonlinear model-based control (NMBC) strategy is developed for a trajectory-tracking problem in an acrylamide polymerization batch reactor. The performance of NMBC is compared with that of nonlinear model predictive control (NMPC). To estimate the reaction states, a nonlinear state estimator, an unscented Kalman filter (UKF), is employed. Both algorithms are implemented experimentally to track a time-varying temperature profile for an acrylamide polymerization reaction in a lab-scale polymerization reactor. It is shown that in the presence of state estimators the NMBC performs significantly better than the NMPC algorithm in real time for the batch reactor control problem.

3.
BMC Cancer ; 15: 636, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26373391

ABSTRACT

BACKGROUND: Ultraviolet (UV) radiation from sun, particularly its UVB component (290-320 nm), is considered the major etiological cause of skin cancer that impacts over 2 million lives in the United States alone. Recently, we reported that polydisperse colloidal suspension of silver nanoparticles (AgNPs) protected the human keratinocytes (HaCaT) against UVB-induced damage, thus indicating their potential for prevention of skin carcinogenesis. Here we sought out to investigate if size controlled the chemopreventive efficacy of AgNPs against UVB-induced DNA damage and apoptosis. METHODS: Percent cell viability was examined by WST-1 assay after treating the cells with various doses (1-10 µg/mL) of AgNPs of different sizes (10, 20, 40, 60 and 100 nm) for 12 and 24 h. For protection studies, cells were treated with AgNPs of different sizes at a uniform concentration of 1 µg/mL. After 3 h, cells were irradiated with UVB (40 mJ/cm(2)) and dot-blot analysis was performed to detect cyclobutane pyrimidine dimers (CPDs) as an indication of DNA damage. Apoptosis was analyzed by flow cytometry after staining the cells with 7-Amino-Actinomycin (7-AAD) and PE Annexin V. Immunoblot analysis was accomplished by processing the cells for protein extraction and Western blotting using specific antibodies against various proteins. RESULTS: The data show that the pretreatment of HaCaT cells with AgNPs in the size range of 10-40 nm were effective in protecting the skin cells from UVB radiation-induced DNA damage as validated by reduced amounts of CPDs, whereas no protection was observed with AgNPs of larger sizes (60 and 100 nm). Similarly, only smaller size AgNPs (10-40 nm) were effective in protecting the skin cells from UV radiation-induced apoptosis. At the molecular level, UVB -irradiation of HaCaT cells led to marked increase in expression of pro-apoptotic protein (Bax) and decrease in anti-apoptotic proteins (Bcl-2 and Bcl-xL), while it remained largely unaffected in skin cells pretreated with smaller size AgNPs (10-40 nm). CONCLUSIONS: Altogether, these findings suggest that size is a critical determinant of the UVB-protective efficacy of AgNPs in human keratinocytes.


Subject(s)
Keratinocytes/drug effects , Keratinocytes/radiation effects , Metal Nanoparticles , Protective Agents , Silver , Ultraviolet Rays , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Damage/drug effects , DNA Damage/radiation effects , Humans , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Particle Size , Protective Agents/administration & dosage , Protective Agents/chemistry
4.
Nanomedicine ; 11(5): 1265-75, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25804413

ABSTRACT

Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. FROM THE CLINICAL EDITOR: Excessive exposure to the sun is known to increase the risk of skin cancer due to DNA damage. In this work, the authors tested the use of silver nanoparticles as protective agents against ultraviolet radiation. The positive results may open a door for the use of silver nanoparticle as novel agents in the future.


Subject(s)
Anticarcinogenic Agents/pharmacology , Apoptosis/drug effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Metal Nanoparticles , Silver/pharmacology , Anticarcinogenic Agents/chemistry , Cell Line , DNA Damage/drug effects , DNA Repair , Humans , Keratinocytes/pathology , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Silver/chemistry , Skin Neoplasms/prevention & control , Ultraviolet Rays
5.
Lab Chip ; 8(12): 2188-96, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19023486

ABSTRACT

A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels. Immunoassays on a digital microfluidic platform require the following basic operations: bead attraction, bead washing, bead retention, and bead resuspension. Several parameters such as magnetic field strength, pull force, position, and buffer composition were studied for effective bead operations. Dilution-based washing of magnetic beads was demonstrated by immobilizing the magnetic beads using a permanent magnet and splitting the excess supernatant using electrowetting. Almost 100% bead retention was achieved after 7776-fold dilution-based washing of the supernatant. Efficient resuspension of magnetic beads was achieved by transporting a droplet with magnetic beads across five electrodes on the platform and exploiting the flow patterns within the droplet to resuspend the beads. All the magnetic-bead droplet operations were integrated together to generate standard curves for sandwich heterogeneous immunoassays on human insulin and interleukin-6 (IL-6) with a total time to result of 7 min for each assay.


Subject(s)
Immunoassay , Magnetics , Microfluidics/instrumentation , Microfluidics/methods , Humans , Immunoassay/methods , Insulin/chemistry , Interleukin-6/chemistry , Magnetics/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL