Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Clin. transl. oncol. (Print) ; 25(5): 1268-1276, mayo 2023. ilus, graf
Article in English | IBECS | ID: ibc-219511

ABSTRACT

Introduction A rapid deploy of unexpected early impact of the COVID pandemic in Spain was described in 2020. Oncology practice was revised to facilitate decision-making regarding multimodal therapy for prevalent cancer types amenable to multidisciplinary treatment in which the radiotherapy component searched more efficient options in the setting of the COVID-19 pandemic, minimizing the risks to patients whilst aiming to guarantee cancer outcomes. Method A novel Proton Beam Therapy (PBT), Unit activity was analyzed in the period of March 2020 to March 2021. Institutional urgent, strict and mandatory clinical care standards for early diagnosis and treatment of COVID-19 infection were stablished in the hospital following national health-authorities’ recommendations. The temporary trends of patients care and research projects proposals were registered. Results 3 out of 14 members of the professional staff involved in the PBR intra-hospital process had a positive test for COVID infection. Also, 4 out of 100 patients had positive tests before initiating PBT, and 7 out of 100 developed positive tests along the weekly mandatory special checkup performed during PBT to all patients. An update of clinical performance at the PBT Unit at CUN Madrid in the initial 500 patients treated with PBT in the period from March 2020 to November 2022 registers a distribution of 131 (26%) pediatric patients, 63 (12%) head and neck cancer and central nervous system neoplasms and 123 (24%) re-irradiation indications. In November 2022, the activity reached a plateau in terms of patients under treatment and the impact of COVID pandemic became sporadic and controlled by minor medical actions. At present, the clinical data are consistent with an academic practice prospectively (NCT05151952). Research projects and scientific production was adapted to the pandemic evolution and its influence upon professional time availability (AU)


Subject(s)
Humans , Coronavirus Infections , Pandemics , Neoplasms/therapy , Proton Therapy/methods
2.
Clin Transl Oncol ; 25(5): 1268-1276, 2023 May.
Article in English | MEDLINE | ID: mdl-36961726

ABSTRACT

INTRODUCTION: A rapid deploy of unexpected early impact of the COVID pandemic in Spain was described in 2020. Oncology practice was revised to facilitate decision-making regarding multimodal therapy for prevalent cancer types amenable to multidisciplinary treatment in which the radiotherapy component searched more efficient options in the setting of the COVID-19 pandemic, minimizing the risks to patients whilst aiming to guarantee cancer outcomes. METHODS: A novel Proton Beam Therapy (PBT), Unit activity was analyzed in the period of March 2020 to March 2021. Institutional urgent, strict and mandatory clinical care standards for early diagnosis and treatment of COVID-19 infection were stablished in the hospital following national health-authorities' recommendations. The temporary trends of patients care and research projects proposals were registered. RESULTS: 3 out of 14 members of the professional staff involved in the PBR intra-hospital process had a positive test for COVID infection. Also, 4 out of 100 patients had positive tests before initiating PBT, and 7 out of 100 developed positive tests along the weekly mandatory special checkup performed during PBT to all patients. An update of clinical performance at the PBT Unit at CUN Madrid in the initial 500 patients treated with PBT in the period from March 2020 to November 2022 registers a distribution of 131 (26%) pediatric patients, 63 (12%) head and neck cancer and central nervous system neoplasms and 123 (24%) re-irradiation indications. In November 2022, the activity reached a plateau in terms of patients under treatment and the impact of COVID pandemic became sporadic and controlled by minor medical actions. At present, the clinical data are consistent with an academic practice prospectively (NCT05151952). Research projects and scientific production was adapted to the pandemic evolution and its influence upon professional time availability. Seven research projects based in public funding were activated in this period and preliminary data on molecular imaging guided proton therapy in brain tumors and post-irradiation patterns of blood biomarkers are reported. CONCLUSIONS: Hospital-based PBT in European academic institutions was impacted by COVID-19 pandemic, although clinical and research activities were developed and sustained. In the post-pandemic era, the benefits of online learning will shape the future of proton therapy education.


Subject(s)
COVID-19 , Head and Neck Neoplasms , Proton Therapy , Humans , Child , Pandemics/prevention & control , COVID-19/epidemiology , Hospitals
3.
Clin. transl. oncol. (Print) ; 25(2): 429-439, feb. 2023.
Article in English | IBECS | ID: ibc-215942

ABSTRACT

Background Local cancer therapy by combining real-time surgical exploration and resection with delivery of a single dose of high-energy electron irradiation entails a very precise and effective local therapeutic approach. Integrating the benefits from minimally invasive surgical techniques with the very precise delivery of intraoperative electron irradiation results in an efficient combined modality therapy. Methods Patients with locally advanced disease, who are candidates for laparoscopic and/or thoracoscopic surgery, received an integrated multimodal management. Preoperative treatment included induction chemotherapy and/or chemoradiation, followed by laparoscopic surgery and intraoperative electron radiation therapy. Results In a period of 5 consecutive years, 125 rectal cancer patients were treated, of which 35% underwent a laparoscopic approach. We found no differences in cancer outcomes and tolerance between the open and laparoscopic groups. Two esophageal cancer patients were treated with IOeRT during thoracoscopic resection, with the resection specimens showing intense downstaging effects. Two oligo-recurrent prostatic cancer patients (isolated nodal progression) had a robotic-assisted surgical resection and post-lymphadenectomy electron boost on the vascular and lateral pelvic wall. Conclusions Minimally invasive and robotic-assisted surgery is feasible to combine with intraoperative electron radiation therapy and offers a new model explored with electron-FLASH beams (AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Robotic Surgical Procedures , Rectal Neoplasms/surgery , Feasibility Studies , Laparoscopy/methods , Neoplasm Recurrence, Local/surgery , Treatment Outcome
4.
Clin Transl Oncol ; 25(2): 429-439, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36169803

ABSTRACT

BACKGROUND: Local cancer therapy by combining real-time surgical exploration and resection with delivery of a single dose of high-energy electron irradiation entails a very precise and effective local therapeutic approach. Integrating the benefits from minimally invasive surgical techniques with the very precise delivery of intraoperative electron irradiation results in an efficient combined modality therapy. METHODS: Patients with locally advanced disease, who are candidates for laparoscopic and/or thoracoscopic surgery, received an integrated multimodal management. Preoperative treatment included induction chemotherapy and/or chemoradiation, followed by laparoscopic surgery and intraoperative electron radiation therapy. RESULTS: In a period of 5 consecutive years, 125 rectal cancer patients were treated, of which 35% underwent a laparoscopic approach. We found no differences in cancer outcomes and tolerance between the open and laparoscopic groups. Two esophageal cancer patients were treated with IOeRT during thoracoscopic resection, with the resection specimens showing intense downstaging effects. Two oligo-recurrent prostatic cancer patients (isolated nodal progression) had a robotic-assisted surgical resection and post-lymphadenectomy electron boost on the vascular and lateral pelvic wall. CONCLUSIONS: Minimally invasive and robotic-assisted surgery is feasible to combine with intraoperative electron radiation therapy and offers a new model explored with electron-FLASH beams.


Subject(s)
Laparoscopy , Rectal Neoplasms , Robotic Surgical Procedures , Humans , Electrons , Feasibility Studies , Neoplasm Recurrence, Local/surgery , Rectal Neoplasms/therapy
5.
Front Oncol ; 12: 1037262, 2022.
Article in English | MEDLINE | ID: mdl-36452493

ABSTRACT

Background: Oligo-recurrent disease has a consolidated evidence of long-term surviving patients due to the use of intense local cancer therapy. The latter combines real-time surgical exploration/resection with high-energy electron beam single dose of irradiation. This results in a very precise radiation dose deposit, which is an essential element of contemporary multidisciplinary individualized oncology. Methods: Patient candidates to proton therapy were evaluated in Multidisciplinary Tumor Board to consider improved treatment options based on the institutional resources and expertise. Proton therapy was delivered by a synchrotron-based pencil beam scanning technology with energy levels from 70.2 to 228.7 MeV, whereas intraoperative electrons were generated in a miniaturized linear accelerator with dose rates ranging from 22 to 36 Gy/min (at Dmax) and energies from 6 to 12 MeV. Results: In a period of 24 months, 327 patients were treated with proton therapy: 218 were adults, 97 had recurrent cancer, and 54 required re-irradiation. The specific radiation modalities selected in five cases included an integral strategy to optimize the local disease management by the combination of surgery, intraoperative electron boost, and external pencil beam proton therapy as components of the radiotherapy management. Recurrent cancer was present in four cases (cervix, sarcoma, melanoma, and rectum), and one patient had a primary unresectable locally advanced pancreatic adenocarcinoma. In re-irradiated patients (cervix and rectum), a tentative radical total dose was achieved by integrating beams of electrons (ranging from 10- to 20-Gy single dose) and protons (30 to 54-Gy Relative Biological Effectiveness (RBE), in 10-25 fractions). Conclusions: Individual case solution strategies combining intraoperative electron radiation therapy and proton therapy for patients with oligo-recurrent or unresectable localized cancer are feasible. The potential of this combination can be clinically explored with electron and proton FLASH beams.

SELECTION OF CITATIONS
SEARCH DETAIL