Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673757

ABSTRACT

Chimeric antigen receptor T cell (CAR T cell) therapy has emerged as a prominent adoptive cell therapy and a therapeutic approach of great interest in the fight against cancer. This approach has shown notorious efficacy in refractory hematological neoplasm, which has bolstered its exploration in the field of solid cancers. However, successfully managing solid tumors presents considerable intrinsic challenges, which include the necessity of guiding the modified cells toward the tumoral region, assuring their penetration and survival in adverse microenvironments, and addressing the complexity of identifying the specific antigens for each type of cancer. This review focuses on outlining the challenges faced by CAR T cell therapy when used in the treatment of solid tumors, as well as presenting optimizations and emergent approaches directed at improving its efficacy in this particular context. From precise localization to the modulation of the tumoral microenvironment and the adaptation of antigen recognition strategies, diverse pathways will be examined to overcome the current limitations and buttress the therapeutic potential of CAR T cells in the fight against solid tumors.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Tumor Microenvironment , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy, Adoptive/methods , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism
2.
Curr Pharm Des ; 28(33): 2725-2741, 2022.
Article in English | MEDLINE | ID: mdl-36321314

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. The symptoms of PD are characterized not only by motor alterations but also by a spectrum of nonmotor symptoms. Some of these are psychiatric manifestations such as sleep disorders; depression; cognitive difficulties that can evolve into dementia; and symptoms of psychosis, which include hallucinations, illusions, and delusions. Parkinson's disease psychosis (PDP) occurs in 18-50% of patients with PD. Treating PDP is challenging because antipsychotic drugs tend to be inefficient or may even worsen the disease's motor symptoms. OBJECTIVE: This review aims to summarize the current understanding of the molecular mechanisms involved in PDP and recent innovative alternatives for its treatment. METHODS: This is a narrative review in which an extensive literature search was performed on the Scopus, EMBASE, PubMed, ISI Web of Science, and Google Scholar databases from inception to August 2021. The terms "Parkinson's disease psychosis", "Parkinson psychosis," "neurodegenerative psychosis", and "dopamine psychosis" were among the keywords used in the search. RESULTS: Recently, views on the etiology of hallucinations and illusions have evolved remarkably. PDP has been cemented as a multifactorial entity dependent on extrinsic and novel intrinsic mechanisms, including genetic factors, neurostructural alterations, functional disruptions, visual processing disturbances, and sleep disorders. Consequently, innovative pharmacological and biological treatments have been proposed. Pimavanserin, a selective 5-HT2A inverse agonist, stands out after its approval to treat PDP-associated hallucinations and illusions. CONCLUSION: Future results from upcoming clinical trials should further characterize the role of this drug in the management of PDP as well as other treatment options with novel mechanisms of action, such as saracatinib, SEP-363856, cannabidiol, electroconvulsive therapy, and transcranial magnetic stimulation.


Subject(s)
Antipsychotic Agents , Illusions , Parkinson Disease , Psychotic Disorders , Sleep Wake Disorders , Humans , Parkinson Disease/drug therapy , Dopamine , Psychotic Disorders/drug therapy , Hallucinations/chemically induced , Hallucinations/drug therapy , Antipsychotic Agents/therapeutic use , Urea/pharmacology , Urea/therapeutic use , Sleep Wake Disorders/chemically induced
3.
F1000Res ; 7: 44, 2018.
Article in English | MEDLINE | ID: mdl-30210784

ABSTRACT

Background: Insulin resistance (IR) is a metabolic disorder related to atherosclerosis. Its measurement is of great importance not only as a marker of diabetes but also for cardiovascular disease. The aim of this research study was to evaluate the relationship between various IR indices and coronary risk in an adult population from Maracaibo city, Venezuela. Methods: The Maracaibo City Metabolic Syndrome Prevalence Study is a descriptive, cross-sectional study with random and multi-stage sampling. In this sub study, 1272 individuals of both genders were selected with the measurement of basal insulin and coronary risk according to the Framingham-Wilson formula calibrated for our population. The insulin resistance indices evaluated were HOMA2-IR, triglycerides and glucose index (TyG) and triglycerides/HDL ratio (TG/HDL). The predictive capacity and association between each index and the coronary risk event in 10 years were determined. Results: Of the evaluated population, 55.2% were female, 34.8% had a coronary risk ≥5% in 10 years, with the TG/HDL and TyG indices showing the highest AUC 0.712 (0.681-0.743) and 0.707 (0.675-0.739), respectively; compared to HOMA2-IR. Both were also the indices most associated with increased coronary risk, especially TG/HDL ≥3 with a higher association [OR = 2.83 (1.74-4.61); p<0.01] after multivariable adjustment. Conclusions: TyG (≥4.5) and TG/HDL (≥3) indices showed a great predictive capacity of higher coronary risk, with being TG/HDL more associated even after adjusting for abdominal obesity and hs-CRP. Therefore, these represent useful tools for determining IR.


Subject(s)
Coronary Artery Disease/epidemiology , Coronary Artery Disease/metabolism , Insulin Resistance , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Risk , Venezuela/epidemiology
4.
J Diabetes Res ; 2018: 9601801, 2018.
Article in English | MEDLINE | ID: mdl-29670917

ABSTRACT

PURPOSE OF REVIEW: Describing the diverse molecular mechanisms (particularly immunological) involved in the death of the pancreatic beta cell in type 1 and type 2 diabetes mellitus. RECENT FINDINGS: Beta cell death is the final event in a series of mechanisms that, up to date, have not been entirely clarified; it represents the pathophysiological mechanism in the natural history of diabetes mellitus. These mechanisms are not limited to an apoptotic process only, which is characteristic of the immune-mediated insulitis in type 1 diabetes mellitus. They also include the action of proinflammatory cytokines, the production of reactive oxygen species, DNA fragmentation (typical of necroptosis in type 1 diabetic patients), excessive production of islet amyloid polypeptide with the consequent endoplasmic reticulum stress, disruption in autophagy mechanisms, and protein complex formation, such as the inflammasome, capable of increasing oxidative stress produced by mitochondrial damage. SUMMARY: Necroptosis, autophagy, and pyroptosis are molecular mechanisms that modulate the survival of the pancreatic beta cell, demonstrating the importance of the immune system in glucolipotoxicity processes and the potential role for immunometabolism as another component of what once known as the "ominous octet."


Subject(s)
Cell Death/physiology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/pathology , Insulin-Secreting Cells/pathology , Oxidative Stress/physiology , Animals , Apoptosis/physiology , Autophagy/physiology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin-Secreting Cells/metabolism , Reactive Oxygen Species/metabolism
5.
Adv Prev Med ; 2016: 9405105, 2016.
Article in English | MEDLINE | ID: mdl-27579182

ABSTRACT

Background and Aim. Insulin resistance (IR) is a prominent pathophysiologic component in a myriad of metabolic disorders, including obesity, prediabetes, and type 2 diabetes mellitus, which are common in our locality. The objective of this study was to determine the prevalence of IR and factors associated with this condition in an adult population from Maracaibo city, Venezuela. Methodology. A cross-sectional, descriptive study with multistaged randomized sampling was carried out in 2026 adults. IR was defined as HOMA2-IR ≥ 2. A multiple logistic regression model was constructed in order to evaluate factors associated with IR. Results. The prevalence of IR was 46.5% (n = 943), with 46.7% (n = 450) in the general population, 46.4% (n = 493) in females, and 47.90% (n = 970) in males (p = 0.895). IR prevalence tended to increase with age and was significantly greater in subjects aged ≥30 years (χ (2) = 16.726; p = 2.33 × 10(-4)). Employment, alcohol consumption, obesity, high triacylglycerides, low HDL-C, and dysglycemia were associated with greater odds of IR, whereas a high level of physical activity appeared to be weak protective factor against IR. Conclusions. The prevalence of IR is elevated in our locality. The main determinants of this condition appear to be the presence of obesity, high triacylglycerides, low HDL-C, dysglycemia, and alcohol intake.

6.
Scientifica (Cairo) ; 2015: 851252, 2015.
Article in English | MEDLINE | ID: mdl-26491604

ABSTRACT

Cardiovascular disease (CVD) is a global epidemic, currently representing the worldwide leading cause of morbidity and mortality. Atherosclerosis is the fundamental pathophysiologic component of CVD, where the immune system plays an essential role. Monocytes and macrophages are key mediators in this aspect: due to their heterogeneity and plasticity, these cells may act as either pro- or anti-inflammatory mediators. Indeed, monocytes may develop heterogeneous functional phenotypes depending on the predominating pro- or anti-inflammatory microenvironment within the lesion, resulting in classic, intermediate, and non-classic monocytes, each with strikingly differing features. Similarly, macrophages may also adopt heterogeneous profiles being mainly M1 and M2, the former showing a proinflammatory profile while the latter demonstrates anti-inflammatory traits; they are further subdivided in several subtypes with more specialized functions. Furthermore, macrophages may display plasticity by dynamically shifting between phenotypes in response to specific signals. Each of these distinct cell profiles is associated with diverse biomarkers which may be exploited for therapeutic intervention, including IL-10, IL-13, PPAR-γ, LXR, NLRP3 inflammasomes, and microRNAs. Direct modulation of the molecular pathways concerning these potential macrophage-related targets represents a promising field for new therapeutic alternatives in atherosclerosis and CVD.

SELECTION OF CITATIONS
SEARCH DETAIL
...