Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 116
1.
ACS Nano ; 18(19): 12547-12559, 2024 May 14.
Article En | MEDLINE | ID: mdl-38695563

Enantioselective sensing and separation represent formidable challenges across a diverse range of scientific domains. The advent of hybrid chiral membranes offers a promising avenue to address these challenges, capitalizing on their unique characteristics, including their heterogeneous structure, porosity, and abundance of chiral surfaces. However, the prevailing fabrication methods typically involve the initial preparation of achiral porous membranes followed by subsequent modification with chiral molecules, limiting their synthesis flexibility and controllability. Moreover, existing chiral membranes struggle to achieve coupled-accelerated enantioseparation (CAE). Here, we report a replacement strategy to controllably produce mesoscale and chiral silica-carbon (MCSC) hybrid membranes that comprise chiral pores by interfacial superassembly on a macroporous alumina (AAO) membrane, in which both ion- and enantiomers can be effectively and selectively transported across the membrane. As a result, the heterostructured hybrid membrane (MCSC/AAO) exhibits enhanced selectivity for cations and enantiomers of amino acids, achieving CAE for amino acids with an isoelectric point (pI) exceeding 7. Interestingly, the MCSC/AAO system demonstrates enhanced pH-sensitive enantioseparation compared to chiral mesoporous silica/AAO (CMS/AAO) with significant improvements of 78.14, 65.37, and 14.29% in the separation efficiency, separation factor, and permeate flux, respectively. This work promises to advance the synthesis of two or more component-integrated chiral nanochannels with multifunctional properties and allows a better understanding of the origins of the homochiral hybrid membranes.

2.
ChemSusChem ; 17(9): e202400241, 2024 May 08.
Article En | MEDLINE | ID: mdl-38494446

The design of high activity catalyst for the efficiently conversion of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) gains great interest. The rationally tailoring of electronic structure directly affects the interaction between catalysts and organic substrates, especially molecular oxygen as the oxidant. This work, the bimetallic catalysts AuPd/CeO2 were prepared by the combining method of chemical reduction and photo-deposition, effectively concerting charge between Au and Pd and forming the electron-rich state of Au. The increasing of oxygen vacancy concentration of CeO2 by acidic treatment can facilitate the adsorption of HMF for catalysts and enhance the yield of FDCA (99.0 %). Moreover, a series of experiment results combining with density functional theory calculation illustrated that the oxidation performance of catalyst in HMF conversion was strongly related to the electronic state of interfacial Au-Pd-CeO2. Furthermore, the electron-rich state sites strengthen the adsorption and activation of molecular oxygen, greatly promoting the elimination of ß-hydride for the selective oxidation of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FDCA, accompanied with an outgoing FDCA formation rate of 13.21 mmol ⋅ g-1 ⋅ min-1 at 80 °C. The perception exhibited in this research could be benefit to understanding the effects of electronic state for interfacial sites and designing excellent catalysts for the oxidation of HMF.

3.
Small ; : e2312151, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438931

Rationally and precisely tuning the composition and structure of materials is a viable strategy to improve electrochemical deionization (EDI) performances, which yet faces enormous challenges. Herein, an eco-friendly biomimetic mineralization synthetic strategy is developed to synthesize the flower-like cobalt selenide/reduced graphene oxide (Bio-CoSe2 /rGO) composites and used as advanced sodium ion adsorption electrodes. Benefiting from the slow and controllable reaction kinetics provided by the biomimetic mineralization process, the flower-like CoSe2 is uniformly constructed in the rGO, which is endowed with robust architecture, substantial adsorption sites and rapid charge/ion transport. The Bio-CoSe2 /rGO electrode yields the maximum salt adsorption capacity and salt adsorption rate of 56.3 mg g-1 and 5.6 mg g-1 min-1 respectively, and 92.5% capacity retention after 60 cycles. These results overmatch the pristine CoSe2 and irregular granular CoSe2 /rGO synthesized by a hydrothermal method, proving the structural superiority of the Bio-CoSe2 /rGO composites. Furthermore, the in-depth adsorption kinetics study indicates the chemisorption nature of sodium ion adsorption. The structures of the Bio-CoSe2 /rGO composites after long term EDI cycles are intensively studied to unveil the mechanism behind such superior EDI performances. This study offers one effective method for constructing advanced EDI electrodes, and enriches the application of the biomimetic mineralization synthetic strategy.

4.
J Hazard Mater ; 469: 133908, 2024 May 05.
Article En | MEDLINE | ID: mdl-38428297

Uranium, as the most essential resource for nuclear power production, provides 13% of global electricity demand, has attracted considerable attention. However, it is still a great challenge for uranium extraction from natural water like salt lakes as the background of high salinity and low concentration (3.3 ∼ 330 ppb). Meanwhile, current uranium extraction strategies are generally focus on extraction capacity or selectivity but neglect to enhance extraction rate. In this work, we designed a novel kind of NIR-driven intelligent nanorobots catchers (MSSA-AO) with amidoxime as claws for uranium capture, which showed almost 100% extraction rate and an ultrafast extraction rate. Importantly, high extraction capacity (221.5 mg g-1) and selectivity were taken into consideration as well as good regeneration performance. Furthermore, amidoxime NRCs boosted in extraction amount about 16.7% during the first 5 min with self-driving performance. Overall, this work suggests a new strategy for ultrafast extraction of uranium from natural water with low abundance selectively by self-propelled NRCs, showing great possibility in outdoor application and promising for meeting huge energy needs globally.

5.
J Hazard Mater ; 468: 133793, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38387181

Tea polyphenols (TPs), like green tea polyphenol (GTP) and black tea polyphenol (BTP), with phenolic hydroxyl structures, form coordination and hydrogen bonds, making them effective for bridging inorganic catalysts and membranes. Here, TPs were employed as interface agents for the preparation of TPs-modified needle-clustered NiCo-layered double hydroxide/graphene oxide membranes (NiCo-LDH-TPs/GO). The incorporation of porous guest material, NiCo-LDH-TPs, facilitated water channel expansion, enhancing membrane permeability and resulting in the development of high-performance, sustainable catalytic cleaning membranes. The introduction of TPs through coordination weakened the surface electronegativity of NiCo-LDH, promoting a uniform mixed dispersion with GO and facilitating membrane self-assembly. NiCo-LDH-GTP/GO-5 and NiCo-LDH-BTP/GO-5 membranes demonstrated permeances of 85.98 and 90.76 L m-2 h-1 bar-1, respectively, with rejections of 98.73% and 99.54% for methylene blue (MB). Notably, the NiCo-LDH-BTP/GO-5 membrane maintained a high rejection of 97.11% even after 18 cycles in the catalytic cleaning process. Furthermore, the modification of GTP and BTP enhanced MB degradation through PMS activation, resulting in a 0.33% and 0.35% increase in the reaction rate constants of NiCo-LDH, respectively, while reducing metal ion spillover. These findings highlighted the potential of TPs in enhancing the efficiency and sustainability of catalytic cleaning GO membranes for water purification and separation processes.

6.
Adv Mater ; 36(19): e2310318, 2024 May.
Article En | MEDLINE | ID: mdl-38320755

Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.


Neoplasms , Neutrophils , Tumor Microenvironment , Humans , Neutrophils/metabolism , Neoplasms/drug therapy , Neoplasms/therapy , Animals , Tumor Microenvironment/drug effects , Drug Delivery Systems , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Extracellular Vesicles/metabolism , Drug Carriers/chemistry
7.
Langmuir ; 40(9): 4927-4939, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38377532

Serious water contamination induced by massive discharge of cadmium(II) ions is becoming an emergent environmental issue due to high toxicity and bioaccumulation; thus, it is extremely urgent to develop functional materials for effectively treating with Cd2+ from wastewater. Benefiting from abundant binding sites, simple preparation process, and adjustable structure, UiO-66-type metal-organic frameworks (MOFs) had emerged as promising candidates in heavy metal adsorption. Herein, monolithic UiO-66-(COOH)2-functionalized cellulose fiber (UCLF) adsorbents were simply fabricated by incorporating MOFs into cellulose membranes through physical blending and self-entanglement. A two-dimensional structure was facilely constructed by cellulose fibers from sustainable biomass agricultural waste, providing a support platform for the integration of eco-friendly UiO-66-(COOH)2 synthesized with lower temperature and toxicity solvent. Structure characterization and bath experiments were performed to determine operational conditions for the maximization of adsorption capacity, thereby bringing out an excellent adsorption capacity of 96.10 mg/g. UCLF adsorbent holding 10 wt % loadings of UiO-66-(COOH)2 (UCLF-2) exhibited higher adsorption capacity toward Cd2+ as compared to other related adsorbents. Based on kinetics, isotherms, and thermodynamics, the adsorption behavior was spontaneous, exothermic, as well as monolayer chemisorption. Coordination and electrostatic attraction were perhaps mechanisms involved in the adsorption process, deeply unveiled by the effects of adsorbate solution pH and X-ray photoelectron spectroscopy. Moreover, UCLF-2 adsorbent with good mechanical strength offered a structural guarantee for the successful implementation of practical applications. This study manifested the feasibility of UCLF adsorbents used for Cd2+ adsorption and unveiled a novel strategy to shape MOF materials for wastewater decontamination.

8.
Chem Commun (Camb) ; 60(15): 2062-2065, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38288752

Here, we present a synthetic route towards γ-amino alcohols with continuous stereocenters based on a copper-catalyzed asymmetric conjugate addition/CO2-trapping tandem reaction of α,ß-unsaturated amide, followed by a reduction of the generated α-carboxyl amide. This strategy provides a green route for the transformation of CO2 into valuable chiral organic molecules.

9.
J Hazard Mater ; 465: 133230, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38134695

Previous research had proved that molecular imprinted polymers can be used as separation material for removing Naringin (NRG) from agricultural pomelo wastes effectively. But the adsorption amounts of NRG molecules from traditional MIPs was quite low by using boronic acid as functional monomer because of single affinity interaction. Therefore, we developed the new combination of bifunctional monomers (i.e. low pKa boronate affinity monomer 2,4-difluoro-3-formylphenylboronic acid and dopamine) based on cellulose nanocrystals (CNCs) mixed with polymerized high internal phase emulsion (polyHIPE, PH) through an double layer surface imprinted method. The introduction of polyethylenimine (PEI) can offer abundant anchor units for the growth of more anchor sites to immobilization template molecules. Importantly, largely improved selective adsorption amounts (50.79 µmol g-1), which may be attribute to the fabrication of the uniform growth of double imprinted layers onto the polydopamine (PDA)/boronic acid-based surfaces. In addition, the resulting double recognition molecular imprinted polymers (MIPs) based on hypercrosslinked PH (DR-HCLPH@MIPs) not only exhibited fast adsorption kinetic of NRG molecule, but also possessed excellent selectivity and high adsorption capacities at physiological pH. Meanwhile, the coarse NRG from pomelo waste can be high selectively extracted to 94.74%. Overall, this study provides a versatile approach for fabrication of the sandwich-biscuit-like double imprinting layer porous MIPs for precise identification and ultrafast transport separation of NRG from complex samples.

10.
ACS Sens ; 9(1): 433-443, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38097397

Given that intricate toxicological profiles exist among different antibiotics and pose serious threats to the environment and human health, synchronous analysis of multiple residues becomes crucial. Sensor arrays show potential to achieve the above purpose, but it is challenging to develop easy-to-use and high-sensitivity tools because the state-of-the-art arrays often require more than one recognition unit and are monosignal dependent. Here we exquisitely designed a fluorescent nanoprobe (2-aminoterephthalic acid-anchored CdTe quantum dots with Eu3+ coordination, CdTe-ATPA-Eu3+) featuring triple emissions at the same excitation as the only element to fabricate a luminescent sensor array with ratiometric calculations for identifying multiple antibiotics. By taking tetracycline, chlortetracycline, doxycycline, oxytetracycline, penicillin G, and sulfamethoxazole as models, the six species exhibited distinguishable motivation or/and quenching impacts on the three emissions of CdTe-ATPA-Eu3+, which were employed as indicators to perform the ratiometric logical operation and further combined with pattern recognition analysis for multitarget determination. Evidently, such a design exhibits two advances: (1) with the triple-emission probe as the sole receptor requiring neither internal nor external adjustments, the fabricated array acts as an extremely facile tool for multianalyte detection; (2) the ratiometric calculations offer excellent sensitivity and reliability for high-performance determination. Consequently, accurate identification and quantification of individual antibiotics and their combinations at various levels were verified in both laboratory and practical matrices. Our work provides a new tool for simultaneously detecting multiple antibiotics, and it will inspire the development of advanced sensor arrays for multitarget analysis.


Cadmium Compounds , Quantum Dots , Humans , Anti-Bacterial Agents , Cadmium Compounds/chemistry , Quantum Dots/chemistry , Reproducibility of Results , Tellurium/chemistry , Fluorescent Dyes/chemistry
11.
Molecules ; 28(24)2023 Dec 05.
Article En | MEDLINE | ID: mdl-38138430

An asymmetric aza-BODIPY analogue bearing quinoxaline moiety was synthesized via a titanium tetrachloride-mediated Schiff-base-forming reaction of 6,7-dimethyl-1,4-dihydroquinoxaline-2,3-dione and benzo[d]thiazol-2-amine. This novel aza-BODIPY analogue forms a complementary hydrogen-bonded dimer due to the quinoxaline moiety in the crystal structure. It also shows intense absorption and fluorescence, with fluorescence quantum yields close to unity. The electrochemical measurements and the DFT calculations revealed the presence of the low-lying HOMO, which benefits their potential applications as an electron-transporting material.

12.
Molecules ; 28(20)2023 Oct 12.
Article En | MEDLINE | ID: mdl-37894522

Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.


Molecular Imprinting , Nucleosides , Polymers/chemistry , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Chromatography, High Pressure Liquid/methods , Adsorption , Solid Phase Extraction/methods
13.
Inorg Chem ; 62(37): 15215-15225, 2023 Sep 18.
Article En | MEDLINE | ID: mdl-37656616

Nanozyme-based multimode detection is a useful means to improve the accuracy and stability of analytical methods. However, both multifunctional nanozymes and related multimodal sensing strategies are still very scarce. Besides, they require complex processes to fabricate and operate. To fill this gap, here we propose a spontaneous interfacial in situ growth strategy to prepare a new bifunctional material (CePO4:Tb@MnOx) featuring good oxidase-like activity and green photoluminescence for the dual-mode colorimetric/luminescence determination of ascorbic acid (AA)-related biomarkers specifically. CePO4:Tb@MnOx was gained through the controllable redox reaction between KMnO4 and CePO4:Tb nanorods. It was interestingly found that MnOx in situ growth not only significantly enhanced the enzyme-like activity but also could reversibly regulate the luminescence of CePO4:Tb via a dual quenching mechanism. More interestingly, CePO4:Tb@MnOx exhibited a distinctive response toward AA against other reducing species. A double-coordination regulation mechanism was further verified to clarify the catalytic activity and luminescence switching behaviors in CePO4:Tb@MnOx. Based on these findings, a dual-mode colorimetric/luminescence approach was established for AA sensing in a "one-stone-two-birds" manner, providing excellent selectivity, sensitivity, and practicability. Furthermore, the determination of AA-related biomarkers, including acid phosphatase activity and organophosphorus residue, was also validated by the sensing principle. Our work not only deepens the understanding of the coordinated regulation of the luminescence and enzyme-like features in lanthanide-based materials but also offers a novel way to design and develop multifunctional nanozymes for advanced bioanalytical applications.


Nanotubes , Oxidoreductases , Animals , Luminescence , Ascorbic Acid , Birds
14.
Inorg Chem ; 62(37): 15277-15292, 2023 Sep 18.
Article En | MEDLINE | ID: mdl-37656824

The construction of strong metal-support interactions in oxide-supported noble metal nanocatalysts has been considered an emerging and efficient way in improving catalytic performance in biomass-upgrading reactions. Herein, a citric acid (CA)-assisted synthesized ZrO2 layer with improved oxygen vacancy (Ov) concentrations on a natural clay mineral of halloysite nanotubes (HNTs) was designed. Moreover, AuxPdy/ZrO2@HNTs-zCA catalysts were prepared by loading AuPd bimetal and employed for aerobic oxidation of the lignocellulosic biomass-derived 5-hydroxymethylfurfural (HMF) platform to the bioplastic monomer 2,5-furandicarboxylic acid (FDCA) with water as the solvent. The results of catalytic experiments revealed that the Au3Pd1/ZrO2@HNTs-1.0CA catalyst exhibited excellent catalytic activity at 0.5 MPa O2, with a satisfactory FDCA yield of 99.5% and outstanding FDCA formation rate of 1057.9 mmol·g-1·h-1. The improved Ov concentration in the ZrO2 support enhanced the adsorption and activation ability of the catalyst for O2, and a higher Lewis acid concentration provided a stronger adsorption ability of the catalyst for reaction substrates. Besides, the synergistic effect of AuPd bimetallic nanoparticles steered the tandem oxidation of aldehyde and alcohol groups in HMF and accelerated the rate-determining step. More importantly, the relationship between the Ov concentration and catalytic performance also demonstrated that the enhanced catalytic activity for HMF oxidation was mainly attributed to the active interface of AuPd-ZrOx. This work offers fresh insights into rationally designing oxygen vacancy-driven strong interactions between the oxide support and noble nanoparticles for the catalytic upgrade of biomass platform chemicals.

15.
Proc Natl Acad Sci U S A ; 120(40): e2306673120, 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37748073

Electrocatalytic nitrogen reduction is a challenging process that requires achieving high ammonia yield rate and reasonable faradaic efficiency. To address this issue, this study developed a catalyst by in situ anchoring interfacial intergrown ultrafine MoO2 nanograins on N-doped carbon fibers. By optimizing the thermal treatment conditions, an abundant number of grain boundaries were generated between MoO2 nanograins, which led to an increased fraction of oxygen vacancies. This, in turn, improved the transfer of electrons, resulting in the creation of highly active reactive sites and efficient nitrogen trapping. The resulting optimal catalyst, MoO2/C700, outperformed commercial MoO2 and state-of-the-art N2 reduction catalysts, with NH3 yield and Faradic efficiency of 173.7 µg h-1 mg-1cat and 27.6%, respectively, under - 0.7 V vs. RHE in 1 M KOH electrolyte. In situ X-ray photoelectron spectroscopy characterization and density functional theory calculation validated the electronic structure effect and advantage of N2 adsorption over oxygen vacancy, revealing the dominant interplay of N2 and oxygen vacancy and generating electronic transfer between nitrogen and Mo(IV). The study also unveiled the origin of improved activity by correlating with the interfacial effect, demonstrating the big potential for practical N2 reduction applications as the obtained optimal catalyst exhibited appreciable catalytic stability during 60 h of continuous electrolysis. This work demonstrates the feasibility of enhancing electrocatalytic nitrogen reduction by engineering grain boundaries to promote oxygen vacancies, offering a promising avenue for efficient and sustainable ammonia production.

16.
Mol Breed ; 43(3): 19, 2023 Mar.
Article En | MEDLINE | ID: mdl-37313299

Purple/red appearance is one of the common phenotypic variations in leaves, stems, and siliques of oilseed rape (Brassica napus L.) but very rare in flowers. In this study, the causal genes for the purple/red traits in stems and flowers in two accessions of oilseed rape (DH_PR and DH_GC001, respectively) derived from the wide hybridization were fine mapped, and candidate genes were determined by methods combined with bulked segregant analysis (BSA) and RNA-seq analysis. Both traits of purple stem and red flowers were mapped to the locus as AtPAP2 homologous genes (BnaPAP2.C6a and BnaPAP2.A7b, respectively) belonging to the R2R3-MYB family. Sequence comparisons of full-length allelic genes revealed several InDels and SNPs in intron 1 as well as exons, and completely different promoter region of BnaPAP2.C6a and a 211 bp insertion was identified in the promoter region of BnaPAP2.A7b of DH_GC001. Our results not only contribute to a better understanding of anthocyanin inheritance in B. napus, but also provide a useful toolbox for future breeding of cultivars with purple/red traits through the combination of different functional alleles and homologs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01365-5.

17.
Membranes (Basel) ; 13(5)2023 May 15.
Article En | MEDLINE | ID: mdl-37233575

Oil pollution caused by a large number of industrial activities and oil spill accidents has posed serious harm to the environment and human health. However, some challenges remain with the existing separation materials, such as poor stability and fouling resistance. Herein, a TiO2/SiO2 fiber membrane (TSFM) was prepared by a one-step hydrothermal method for oil-water separation in acid, alkali, and salt environments. The TiO2 nanoparticles were successfully grown on the fiber surface, endowing the membrane with superhydrophilicity/underwater superoleophobicity. The as-prepared TSFM exhibits high separation efficiency (above 98%) and separation fluxes (3016.38-3263.45 L·m-2·h-1) for various oil-water mixtures. Importantly, the membrane shows good corrosion resistance in acid, alkaline, and salt solutions and still maintains underwater superoleophobicity and high separation performance. The TSFM displays good performance after repeated separation, demonstrating its excellent antifouling ability. Importantly, the pollutants on the membrane surface can be effectively degraded under light radiation to restore its underwater superoleophobicity, showing the unique self-cleaning ability of the membrane. In view of its good self-cleaning ability and environmental stability, the membrane can be used for wastewater treatment and oil spill recovery and has a broad application prospect in water treatment in complex environments.

18.
J Cancer Res Clin Oncol ; 149(12): 9705-9720, 2023 Sep.
Article En | MEDLINE | ID: mdl-37233762

PURPOSE: This study aims to elucidate the mechanism underlying temozolomide resistance in patients with MGMT promoter hypomethylated glioblastoma, which is correlated with poor prognosis. The objective is to identify therapeutic targets and drugs suitable for temozolomide-resistant glioblastoma patients using big data analysis. METHODS: In this retrospective study, transcriptome sequencing data from 457 glioblastoma patients, multi-omics data, and single-cell sequencing data were employed to assess the expression pattern, prognostic value, and biological functions of AHR in glioblastoma. The HERB database was utilized to screen for AHR-targeted drugs for glioblastoma treatment. Validation of our findings was conducted using multiplex immunofluorescence staining of clinical samples and T cells and tumor cells co-culture models. RESULTS: Our findings demonstrated that patients with MGMT promoter unmethylation did not benefit from postoperative temozolomide chemotherapy due to resistance arising from DNA repair function and tumor immune response. AHR was found to be expressed in immune cells and exhibited an immunomodulatory role in glioblastoma with MGMT promoter unmethylation. AHR was identified as a potential novel inhibitory immune checkpoint receptor, serving as a therapeutic target for temozolomide-resistant glioblastoma. Furthermore, targeting AHR with Semen aesculi markedly enhanced the cytotoxic effect of T cells on glioma cells. CONCLUSIONS: In addition to DNA repair function, the tumor immune response plays a pivotal role in temozolomide resistance of glioblastoma. Herbal compounds targeting AHR may offer an effective treatment for temozolomide-resistant glioblastoma.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Temozolomide , Antineoplastic Agents, Alkylating , Retrospective Studies , Tumor Suppressor Proteins/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation
19.
J Phys Chem B ; 127(21): 4858-4869, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37204808

The underlying recognition mechanisms of alkali metal ions by crown ethers in aqueous solutions are yet to be fully understood at the molecular level. We report direct experimental and theoretical evidence for the structure and recognition sequence of alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) by 18-crown-6 in aqueous solutions by wide-angle X-ray scattering combined with an empirical potential structure refinement modeling and ab initio molecular dynamics simulation. Li+, Na+, and K+ are located in the negative potential cavity of 18-crown-6, with Li+ and Na+ deviating from the centroid of 18-crown-6 by 0.95 and 0.35 Å, respectively. Rb+ and Cs+ lie outside the 18-crown-6 ring and deviate from the centroid of 18-crown-6 by 0.05 and 1.35 Å, respectively. The formation of the 18-crown-6/alkali metal ion complexes is dominated by electrostatic attraction between the cations and the oxygen atoms (Oc) of 18-crown-6. Li+, Na+, K+, and Rb+ form the H2O···18-crown-6/cation···H2O "sandwich" hydrates, while water molecules only hydrate with Cs+ of the 18-crown-6/Cs+ complex on the same side of Cs+. Based on the local structure, the recognition sequence of 18-crown-6 for alkali metal ions in an aqueous solution follows K+ > Rb+ >Na+ >Li+, which is completely different from that (Li+ > Na+ > K+ > Rb+ > Cs+) in the gas phase, confirming that the solvation medium seriously affects the cation recognition of crown ethers. This work provides atomic insights into understanding the host-guest recognition and solvation behavior of crown ether/cation complexes.

20.
ACS Appl Mater Interfaces ; 15(20): 24736-24746, 2023 May 24.
Article En | MEDLINE | ID: mdl-37163688

As a typical antibiotic pollutant, tetracycline (TC) is producing increasing threats to the ecosystem and human health, and exploring convenient means for monitoring of TC is needed. Here, we proposed alkali-etched imprinted Mn-based Prussian blue analogues featuring superior oxidase-mimetic activity and precise recognition for the colorimetric sensing of TC. Simply etching Mn-based Prussian blue analogues (Mn-PBAs) with NaOH could expose the sites and surfaces to significantly improve their catalytic activity. Density functional theory calculations were employed to screen the molecularly imprinted polymer (MIP) layer for target identification. Consequently, the designed Mn-PBANaOH@MIP possessed the rich channels for substrates to get in touch with the active Mn-PBANaOH core, showing an excellent catalytic capacity to trigger the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) without the use of H2O2. If TC was introduced, it would be recognized selectively by the MIP shell and masked the channels for TMB access, resulting in the obstruction of the chromogenic reaction. According to this mechanism, selective optical detection of TC was achieved, and performance stability, reusability, and reliability as well as practicability were also verified, promising potential for TC monitoring in complex matrices. Our work not only presents an effective way to enhance the enzyme-like activity of Prussian blue analogues but also provides a facile approach for TC sensing. Additionally, the work will inspire the exploration of molecularly imprinted nanozymes for various applications.


Colorimetry , Oxidoreductases , Humans , Colorimetry/methods , Hydrogen Peroxide , Ecosystem , Reproducibility of Results , Sodium Hydroxide , Tetracycline , Anti-Bacterial Agents
...