Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters











Publication year range
1.
Biochem Pharmacol ; : 116552, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307319

ABSTRACT

Mitochondrial dysfunction is associated with hyperglycemic conditions and insulin resistance leading to cellular damage and apoptosis of cardiomyocytes in diabetic cardiomyopathy. The dysregulation of glucagon-like peptide-1 (GLP-1) receptor and mammalian target of rapamycin (mTOR) is linked to cardiomyopathies and myocardial dysfunctions mediated by hyperglycemia. However, the involvements of mTOR for GLP-1 receptor-mediated cardioprotection against high glucose (HG)-induced mitochondrial disturbances are not clearly identified. The present study demonstrated that HG-induced cellular stresses and mitochondrial damages resulted in an impairment of ATP production and oxidative defense markers such as catalase and SOD2 and a reduction of survival markers such as Bcl-2 and p-Akt, while an increased expression of pro-apoptotic marker Bax was observed in H9c2 cardiomyoblasts. In addition, the autophagic marker LC3-II was considerably reduced, together with the disruption of autophagy regulators (p-mTOR and p-AMPKα) under the hyperglycemic state. Furthermore, there was a dysregulated expression of several indicators related to mitochondrial homeostasis (e.g., MFN2, p-DRP1, FIS1, MCU, UCP3, and Parkin). Remarkably, treatment with either exendin-4 (GLP-1 receptor agonist) or rapamycin (mTOR inhibitor) significantly inhibited HG-induced mitochondrial damage while co-treatment of exendin-4 and rapamycin completely reversed all mitochondrial abnormalities. Antagonism of GLP-1 receptors using exendin-(9-39) abolished these cardioprotective effects of exendin-4 and rapamycin under HG conditions. In addition, exendin-4 attenuated HG-induced phosphorylation of mTOR, and this inhibitory effect was antagonized by exendin-(9-39), indicating the regulation of mTOR by GLP-1 receptor. Therefore, improvement of mitochondrial dysfunction by stimulating the GLP-1 receptor/AMPK/Akt pathway and inhibiting mTOR signaling could ameliorate cardiac abnormalities caused by hyperglycemic conditions.

2.
Environ Toxicol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056589

ABSTRACT

Naringin, a bioflavonoid compound from grapefruit or citrus, exerts anticancer activities on cervical, thyroid, colon, brain, liver, lung, thyroid, and breast cancers. The present investigation addressed exploring the anticancer effects of naringin on nasopharyngeal carcinoma (NPC) cells. Naringin exhibits a cytotoxic effect on NPC-TW 039 and NPC-TW 076 cells with IC50 372/328 and 394/307 µM for 24 or 48 h, respectively, while causing little toxicity toward normal gingival epithelial (SG) cells (>500/500 µM). We established that naringin triggered G1 arrest is achieved by suppressing cyclin D1, cyclin A, and CDK2, and upregulating p21 protein in NPC cells. Exposure of NPC cells to naringin caused a series of events leading to apoptosis including morphology change (cell shrinkage and membrane blebbing) and chromatin condensation. Annexin V and PI staining indicated that naringin treatment promotes necrosis and late apoptosis in NPC cells. DiOC6 staining showed a decline in the mitochondrial membrane potential by naringin treatment, which was followed with cytochrome c release, Apaf-1/caspase-9/-3 activation, PARP cleavage, and EndoG expression in NPC cells. Naringin upregulated proapoptotic Bax and decreased antiapoptotic Bcl-xL expression, and dysregulated Bax/Bcl-xL ratio in NPC cells. Notably, naringin enhanced death receptor-related t-Bid expression. Furthermore, an increased Ca2+ release by naringin treatment which instigated endoplasmic reticulum stress-associated apoptosis through increased IRE1, ATF-6, GRP78, GADD153, and caspase-12 expression in NPC cells. In addition, naringin triggers ROS production, and inhibition of naringin-induced ROS generation by antioxidant N-acetylcysteine resulted in the prevention of G1 arrest and apoptosis in NPC cells. Naringin-induced ROS-mediated G1 arrest and mitochondrial-, death receptor-, and endoplasmic reticulum stress-mediated apoptosis may be a promising strategy for treating NPC.

3.
Environ Sci Pollut Res Int ; 31(34): 47144-47156, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987515

ABSTRACT

This study was conducted to assess particulate matter pollution and the accumulation of airborne toxic metals by studying the foliar deposition pattern in an urban environment. To this end, two commonly growing plants (Senna siamea (Lam.) H.S.Irwin & Barneby and Alstonia scholaris (L.) R.Br.) from the busiest traffic squares of the city (Nehru Chowk) in Bilaspur, India, were selected for detailed study. For this purpose, plant leaf samples of both plant species were collected from pollution-affected areas and a reference site (unpolluted) in the city and examined by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS) to estimate the accumulation of PM-bound toxic metals at the leaf surfaces. The results of this study showed that the leaves of both plants accumulate PM in different size ranges. Although both plant leaves showed accumulation of PM from respirable suspended particulate matter (RSPM) to ultra-fine particles (UFPs: < 0.1: less than 100 nm) range along with toxic metals, S. siamea retained a higher level of PM than A. scholaris due to better micro-morphological properties on both leaf surfaces. The size of some PM was found to be smaller than the stoma openings. The EDS study proved the presence of harmful airborne toxic metals (Pb, Cd, Cu, Zr, Al, Co, etc.) in these PMs of ambient air. This indicates that toxic metals can enter the leaves through stomatal openings. The results of this study recommended that both plants can be used as a tool to minimise PM pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Metals , Particulate Matter , Plant Leaves , Plant Leaves/chemistry , Air Pollutants/analysis , India , Spectrometry, X-Ray Emission , Microscopy, Electron, Scanning , Particle Size , Metals, Heavy/analysis
4.
Int J Biol Sci ; 20(8): 2790-2813, 2024.
Article in English | MEDLINE | ID: mdl-38904007

ABSTRACT

Coenzyme Q0 (CoQ0), a quinone derivative from Antrodia camphorata, has antitumor capabilities. This study investigated the antitumor effect of noncytotoxic CoQ0, which included NLRP3 inflammasome inhibition, anti-EMT/metastasis, and metabolic reprogramming via HIF-1α inhibition, in HNSCC cells under normoxia and hypoxia. CoQ0 suppressed hypoxia-induced ROS-mediated HIF-1α expression in OECM-1 and SAS cells. Under normoxia and hypoxia, the inflammatory NLRP3, ASC/caspase-1, NFκB, and IL-1ß expression was reduced by CoQ0. CoQ0 reduced migration/invasion by enhancing epithelial marker E-cadherin and suppressing mesenchymal markers Twist, N-cadherin, Snail, and MMP-9, and MMP-2 expression. CoQ0 inhibited glucose uptake, lactate accumulation, GLUT1 levels, and HIF-1α-target gene (HK-2, PFK-1, and LDH-A) expressions that are involved in aerobic glycolysis. Notably, CoQ0 reduced ECAR as well as glycolysis, glycolytic capability, and glycolytic reserve and enhanced OCR, basal respiration, ATP generation, maximal respiration, and spare capacity in OECM-1 cells. Metabolomic analysis using LC-ESI-MS showed that CoQ0 treatment decreased the levels of glycolytic intermediates, including lactate, 2/3-phosphoglycerate, fructose 1,6-bisphosphate, and phosphoenolpyruvate, and increased the levels of TCA cycle metabolites, including citrate, isocitrate, and succinate. HIF-1α silencing reversed CoQ0-mediated anti-metastasis (N-Cadherin, Snail, and MMP-9) and metabolic reprogramming (GLUT1, HK-2, and PKM-2) under hypoxia. CoQ0 prevents cancer stem-like characteristics (upregulated CD24 expression and downregulated CD44, ALDH1, and OCT4) under normoxia and/or hypoxia. Further, in IL-6-treated SG cells, CoQ0 attenuated fibrosis by inhibiting TGF-ß and Collagen I expression and suppressed EMT by downregulating Slug and upregulating E-cadherin expression. Interesting, CoQ0 inhibited the growth of OECM-1 tumors in xenografted mice. Our results advocate CoQ0 for the therapeutic application against HNSCC.


Subject(s)
Epithelial-Mesenchymal Transition , Hypoxia-Inducible Factor 1, alpha Subunit , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Squamous Cell Carcinoma of Head and Neck , Ubiquinone , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Animals , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Mice , Inflammasomes/metabolism , Warburg Effect, Oncologic/drug effects , Mice, Nude , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/drug therapy
5.
Chemosphere ; 360: 142364, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768790

ABSTRACT

In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.


Subject(s)
Biodegradation, Environmental , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wetlands , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Adsorption
6.
MethodsX ; 12: 102645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38524303

ABSTRACT

Distributions of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and fecal viral biomarkers between solid and liquid phases of wastewater are largely unknown. Herein, distributions of SARS-CoV-2, Pepper Mild Mottle Virus (PMMoV), and F-RNA bacteriophage group II (FRNAPH-II) were determined by viral RNA RT-qPCR. Comparison of viral recovery using three conventional fractionation methods included membrane filtration, a combination of mid-speed centrifugation and membrane filtration, and high-speed centrifugation. SARS-CoV-2 partitioned to the solids fraction in greater abundance compared to liquid fractions in a combination of mid-speed centrifugation and membrane filtration and high-speed centrifugation, but not in membrane filtration method in a particular assay, while fecal biomarkers (PMMoV and FRNAPH-II) exhibited the reciprocal relationship. The wastewater fractionation method had minimal effects on the solids-liquids distribution for all viral and phage markers tested; however, viral RNA load was significantly greater in solid-liquid fractions viral RNA loads compared with the than whole-wastewater PEG precipitation. A RNeasy PowerWater Kit with PCR inhibitor removal resulted in greater viral RNA loads and lesser PCR inhibition compared to a QIAamp Viral RNA Mini Kit without PCR inhibitor removal. These results support the development of improved methods and interpretation of WBE of SARS-CoV-2. •Distribution of SARS-CoV-2 to liquid and solid portions was addressed.•Addressing PCR inhibition is important in wastewater-based epidemiology.•Fraction methods have minimal effect.

7.
Cell Commun Signal ; 22(1): 151, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38408981

ABSTRACT

BACKGROUND: Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS: We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS: CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS: Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.


Subject(s)
Benzoquinones , Melanins , Polyporales , Ubiquinone , Animals , Humans , Ubiquinone/pharmacology , Ubiquinone/metabolism , Melanins/metabolism , Zebrafish/metabolism , Monophenol Monooxygenase/metabolism , alpha-MSH/metabolism , Beclin-1/metabolism , Melanocytes/metabolism , Keratinocytes/metabolism , Autophagy , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor
8.
J Phys Condens Matter ; 36(16)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38190735

ABSTRACT

In the present work, we have performed the phonon dispersion calculations of body-centered cubic vanadium (V) and niobium (Nb) with the supercell approach using different supercell size. Using DFT method, the calculated phonon spectra of V and Nb are found to be in a good agreement with the available experimental data. Our calculated results show a 'dip'-like feature in the longitudinal acoustic phonon mode along the Γ-H high symmetric path for both transition metals in the case of supercell size4×4×4. However, in supercell size2×2×2and3×3×3, the 'dip'-like feature is not clearly visible. In addition to this, thermodynamical properties are also computed, which compare well with the experimental data. Apart from this, the phonon lifetime due to electron-phonon interactions (τephph) and phonon-phonon interactions (PPIs) (τphph) are calculated. The effect of PPIs is studied by computing the average phonon lifetime for all acoustic branches. The value ofτephphof V (Nb) is found to be 23.16 (24.70)×10-15s at 100 K, which gets decreased to 1.51 (1.85)×10-15s at 1000 K. Theτphphof V (Nb) is found to be 8.59 (18.09)×10-12and 0.83 (1.76)×10-12s at 100 and 1000 K, respectively. Nextly, the lattice thermal conductivity is computed using linearized phonon Boltzmann equation. The present work suggests that studying the variation of phonon dispersion with supercell size is crucial for understanding the phonon properties of solids accurately.

9.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687392

ABSTRACT

Monoterpenes are volatile organic compounds that play important roles in atmospheric chemistry, plant physiology, communication, and defense. This review compiles the monoterpene emission flux data reported for different regions and plant species and highlights the role of abiotic environmental factors in controlling the emissions of biogenic monoterpenes and their emission fluxes for terrestrial plant species (including seasonal variations). Previous studies have demonstrated the role and importance of ambient air temperature and light in controlling monoterpene emissions, likely contributing to higher monoterpene emissions during the summer season in temperate regions. In addition to light and temperature dependence, other important environmental variables such as carbon dioxide (CO2), ozone (O3), soil moisture, and nutrient availability are also known to influence monoterpene emissions rates, but the information available is still limited. Throughout the paper, we identify knowledge gaps and provide recommendations for future studies.

10.
Article in English | MEDLINE | ID: mdl-37539481

ABSTRACT

In this work, we report the existence ofnodal-arc, which acts as the building block of all the nodal-rings in TaAs & TaP. Thisnodal-arcis found to be capable of generating all the nodal-rings in these materials upon the application of space-group symmetry operations including time-reversal symmetry. The arcs are obtained to be dispersive with the energy spread of ∼109 (∼204) meV in TaAs (TaP). Also, the orbitals leading to bands-inversion and thus the formation ofnodal-arcsare found to be Ta-5d& As-4p(P-3p) in TaAs (TaP). The area of nodal-rings is found to be highly sensitive to the change in hybridization-strength, where the increase in hybridization-strength leads to the decrease in the area of nodal-rings. In the presence of spin-orbit coupling (SOC), all the points on these arcs get gaped-up and two pairs of Weyl-nodes are found to evolve from them. Out of the two pair, one is found to be situated close to the joining point of the two arcs forming a ring. This causes the evolution of each nodal-ring into three pairs of Weyl-nodes. The coordinates of these Weyl-nodes are found to be robust to the increase in SOC-strength from ∼ 0.7-3.5 eV. All the results are obtained at thefirst-principlelevel. This work provides a clear picture of the existence of nodal-arc due to accidental degeneracy and its evolution into Weyl-nodes under the effect of SOC.

11.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37375783

ABSTRACT

Diabetes is one of the chronic metabolic disorders which poses a multitude of life-debilitating challenges, including cardiac muscle impairment, which eventually results in heart failure. The incretin hormone glucagon-like peptide-1 (GLP-1) has gained distinct recognition in reinstating glucose homeostasis in diabetes, while it is now largely accepted that it has an array of biological effects in the body. Several lines of evidence have revealed that GLP-1 and its analogs possess cardioprotective effects by various mechanisms related to cardiac contractility, myocardial glucose uptake, cardiac oxidative stress and ischemia/reperfusion injury, and mitochondrial homeostasis. Upon binding to GLP-1 receptor (GLP-1R), GLP-1 and its analogs exert their effects via adenylyl cyclase-mediated cAMP elevation and subsequent activation of cAMP-dependent protein kinase(s) which stimulates the insulin release in conjunction with enhanced Ca2+ and ATP levels. Recent findings have suggested additional downstream molecular pathways stirred by long-term exposure of GLP-1 analogs, which pave the way for the development of potential therapeutic molecules with longer lasting beneficial effects against diabetic cardiomyopathies. This review provides a comprehensive overview of the recent advances in the understanding of the GLP-1R-dependent and -independent actions of GLP-1 and its analogs in the protection against cardiomyopathies.

12.
Eur J Pharmacol ; 954: 175896, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37391007

ABSTRACT

Mitochondrial dysfunction under diabetic condition leads to the development and progression of neurodegenerative complications. Recently, the beneficial effects of glucagon-like peptide-1 (GLP-1) receptor agonists on diabetic neuropathies have been widely recognized. However, molecular mechanisms underlying the neuroprotective effects of GLP-1 receptor agonists against high glucose (HG)-induced neuronal damages is not completely elucidated. Here, we investigated the underlying mechanisms of GLP-1 receptor agonist treatment against oxidative stress, mitochondrial dysfunction, and neuronal damages under HG conditions mimicking a diabetic hyperglycemic state in SH-SY5Y neuroblastoma cells. We revealed that treatment with exendin-4, a GLP-1 receptor agonist, not only increased the expression of survival markers, phospho-Akt/Akt and Bcl-2, but also decreased the expression of pro-apoptotic marker, Bax, and reduced the levels of reactive oxygen species (ROS) defense markers (catalase, SOD-2, and HO-1) under HG conditions. The expressions of mitochondrial function associated genes, MCU and UCP3, and mitochondrial fission genes, DRP1 and FIS1, were decreased by exendin-4 compared to non-treated levels, while the protein expression levels of mitochondrial homeostasis regulators, Parkin and PINK1, were enhanced. In addition, blockade of Epac and Akt activities was able to antagonize these neuroprotective effects of exendin-4. Collectively, we demonstrated that stimulation of GLP-1 receptor propagates a neuroprotective cascade against the oxidative stress and mitochondrial dysfunction as well as augments survival through the Epac/Akt-dependent pathway. Therefore, the revealed mechanisms underlying GLP-1 receptor pathway by preserving mitochondrial homeostasis would be a therapeutic candidate to alleviate neuronal dysfunctions and delay the progression of diabetic neuropathies.


Subject(s)
Diabetic Neuropathies , Neuroblastoma , Neuroprotective Agents , Humans , Exenatide/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Apoptosis , Neuroblastoma/metabolism , Oxidative Stress , Mitochondria/metabolism , Glucose/metabolism
13.
J Phys Condens Matter ; 35(31)2023 May 10.
Article in English | MEDLINE | ID: mdl-37161911

ABSTRACT

Kondo coupling has been extensively investigated in several Ce-based systems. However, the search for materials showing the interplay between the Kondo effect, spin-orbit interaction, and crystal-field effect along with the presence of local charge susceptibility; remains a challenge for the condensed matter community. Actually, in Ce-based systems, the strong coupling of the conduction electrons to the local magnetic moments usually hides these properties. Here, we present a detailed investigation of Ce0.6La0.4Ge through a combined density functional theory and dynamic mean-field theory study. Our investigations give evidence of the significant charge susceptibility and the multiple differentf-chybridization configurations. The weakening of the magnetization owing to the dilution of the Ce-site is the main cause for the appearance of such properties, which is believed to occur due to the presence of the relevant local moment andf-chybridization over the competition with the on-site Coulomb interaction.

14.
Biomed Pharmacother ; 158: 114178, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916401

ABSTRACT

BACKGROUND: Antrodia salmonea (AS) exhibits anticancer activities against various cancers. OBJECTIVE: This study investigated the anticancer activities of AS on human glioblastoma (GBM8401 and U87MG) cells both in vitro and in vivo and explained the underlying molecular mechanism. METHODS: MTT, colony formation, migration/invasion assay, immunoblotting, immunofluorescence, TUNEL, Annexin V/PI staining, AO staining, GFP-LC3 transfection, TEM, qPCR, siLC3, DCFH2-DA assay, and xenografted-nude mice were used to assess the potential of AS therapy. RESULTS: AS treatment retarded growth and suppressed colony formation in glioblastoma cells. AS attenuates EMT by suppressing invasion and migration, increasing E-cadherin expression, decreasing Twist, Snail, and N-cadherin expression, and inhibiting Wnt/ß-catenin pathways in GBM8401 and U87MG cells. Furthermore, AS induced apoptosis by activating caspase-3, cleaving PARP, and dysregulating Bax and Bcl-2 in both cell lines. TUNEL assay and Annexin V/PI staining indicated AS-mediated late apoptosis. Interestingly, AS induced autophagic cell death by LC3-II accumulation, AVO formation, autophagosome GFP-LC3 puncta, p62/SQSTM1 expression, and ATG4B inhibition in GBM8401 and U87MG cells. TEM data revealed that AS favored autophagosome and autolysosome formation. The autophagy inhibitors 3-MA/CQ and LC3 knockdown suppressed AS-induced apoptosis in glioblastoma cells, indicating that the inhibition of autophagy decreased AS-induced apoptosis. Notably, the antioxidant N-acetylcysteine (NAC) inhibited AS-mediated ROS production and AS-induced apoptotic and autophagic cell death. Furthermore, AS induced ROS-mediated inhibition of the PI3K/AKT/mTOR signaling pathway. AS reduced the tumor burden in GBM8401-xenografted nude mice and significantly modulated tumor xenografts by inducing anti-EMT, apoptosis, and autophagy. AS could be a potential antitumor agent in human glioblastoma treatment.


Subject(s)
Autophagic Cell Death , Glioblastoma , Animals , Mice , Humans , Reactive Oxygen Species/metabolism , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Glioblastoma/drug therapy , Annexin A5 , Apoptosis , Autophagy , Cell Line, Tumor
15.
Environ Toxicol ; 38(7): 1548-1564, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36947447

ABSTRACT

Antrodia camphorata (AC) and Coenzyme Q0 (CoQ0 ), a novel quinone derivative of AC, exhibits antitumor activities. The present study evaluated EMT/metastasis inhibition and autophagy induction aspects of AC and CoQ0 in human glioblastoma (GBM8401) cells. Our findings revealed that AC treatment (0-150 µg/mL) hindered tumor cell proliferation and migration/invasion in GBM8401 cells. Notably, AC treatment inhibited HIF-1α and EMT by upregulating epithelial marker protein E-cadherin while downregulating mesenchymal proteins Twist, Slug, Snail, and ß-catenin. There was an appearance of the autophagy markers LC3-II and p62/SQSTM1, while ATG4B was downregulated by AC treatment. We also found that CoQ0 (0-10 µM) could inhibit migration and invasion in GBM8401 cells. In particular, E-cadherin was elevated and N-cadherin, Vimentin, Twist, Slug, and Snail, were reduced upon CoQ0 treatment. In addition, MMP-2/-9 expression and Wnt/ß-catenin pathways were downregulated. Furthermore, autophagy inhibitors 3-MA or CQ reversed the CoQ0 -elicited suppression of migration/invasion and metastasis-related proteins (Vimentin, Snail, and ß-catenin). Results suggested autophagy-mediated antiEMT and antimetastasis upon CoQ0 treatment. CoQ0 inhibited HIF-1α and metastasis in GBM8401 cells under normoxia and hypoxia. HIF-1α knockdown using siRNA accelerated CoQ0 -inhibited migration. Finally, CoQ0 exhibited a prolonged survival rate in GBM8401-xenografted mice. Treatment with Antrodia camphorata/CoQ0 inhibited HIF-1α and EMT/metastasis in glioblastoma.


Subject(s)
Glioblastoma , beta Catenin , Humans , Animals , Mice , beta Catenin/metabolism , Ubiquinone/pharmacology , Vimentin/metabolism , Epithelial-Mesenchymal Transition , Glioblastoma/drug therapy , Neoplasm Invasiveness/pathology , Cadherins/genetics , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit , Cell Movement
16.
Toxicol Appl Pharmacol ; 465: 116453, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36914119

ABSTRACT

HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.


Subject(s)
Head and Neck Neoplasms , Ubiquinone , Humans , Animals , Mice , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Reactive Oxygen Species/metabolism , Mice, Nude , Squamous Cell Carcinoma of Head and Neck , Cell Death , Apoptosis , Cell Line, Tumor , Autophagy , Head and Neck Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Nuclear Proteins , Twist-Related Protein 1
17.
Food Chem Toxicol ; 172: 113564, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563924

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a relatively common malignancy, characterized by lethal morbidity. Herein, we attempted to investigate the autophagy/apoptosis activities of the submerged fermented broths of Antrodia salmonea (AS) in HNSCC Twist-overexpressing (OECM-1 and FaDu-Twist) cells. AS (0-150 µg/mL) effectively reduced cell viability, colony formation, and downregulated Twist expression in OECM-1 and FaDu-Twist cells compared to FaDu cells. AS- induced apoptosis was mainly associated with activation of caspase-3, PARP cleavage, increased expression of VDAC-1 and disproportionation of Bax/Bcl-2. Annexin V/PI staining suggested late apoptosis induction by AS treatment. AS exhibits enhanced autophagy process mediated via LC3-I/II accumulation, increased acidic vesicular organelles (AVOs) formation and p62/SQSTM1 expression feeding into the apoptotic program. However, pre-treatment with autophagy blockers 3-MA and CQ significantly diminished AS-induced cell death. Additionally, suppression of AS-induced ROS release by treatment with antioxidant N-acetylcysteine (NAC) resulted in reduction of apoptotic and autophagic cell death. In vivo studies strengthened the above observations and showed that AS effectively reduced the tumor volume and tumor weight in OECM-1-xenografted nude mice. This study discovered that Antrodia salmonea exhibits a novel anti-cancer mechanism which could be harnessed as a new potent drug for HNSCC treatment.


Subject(s)
Apoptosis , Head and Neck Neoplasms , Animals , Mice , Squamous Cell Carcinoma of Head and Neck/drug therapy , Reactive Oxygen Species/metabolism , Mice, Nude , Autophagy , Cell Line, Tumor , Head and Neck Neoplasms/drug therapy
18.
Water Environ Res ; 94(12): e10819, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36539344

ABSTRACT

This review describes the occurrence and distribution of microplastics in freshwater and marine environments in recent years (2017-2022). Use of microplastics often results in contamination of aquatic environments, threatens biodiversity, and creates the need for environmental remediation. Such remediation strategies can involve primary, secondary, and tertiary treatments. Tertiary treatment is a frequent research subject due to its high efficiency and the possibility for advancements and enhancements. This study discusses tertiary treatments with remediation efficiencies of 95% and greater and their advantages, disadvantages, and future perspectives. Biochar-mediated remediation of microplastics is an effective method that may be able to achieve efficiencies approaching 100%. The study concludes by exploring methods of removing microplastics, including constructed wetlands and biochar, which offer high efficiency. PRACTITIONER POINTS: Tertiary treatments are an effective microplastic remediation strategy applicable succeeding secondary or primary treatments or as an individual remediation strategy. Biochar is a highly efficient adsorbent for microplastic remediation from aquatic environment with eco-friendly aspect and reusability. Modifications in tertiary treatments and enhancement in remediation efficiency are still a subject of research for future studies.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Ecosystem , Environmental Monitoring , Water Pollutants, Chemical/analysis
19.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430296

ABSTRACT

Patients with type two diabetes mellitus (T2DM) are at increased risk for cardiovascular diseases. Impairments of endothelin-1 (ET-1) signaling and mTOR pathway have been implicated in diabetic cardiomyopathies. However, the molecular interplay between the ET-1 and mTOR pathway under high glucose (HG) conditions in H9c2 cardiomyoblasts has not been investigated. We employed MTT assay, qPCR, western blotting, fluorescence assays, and confocal microscopy to assess the oxidative stress and mitochondrial damage under hyperglycemic conditions in H9c2 cells. Our results showed that HG-induced cellular stress leads to a significant decline in cell survival and an impairment in the activation of ETA-R/ETB-R and the mTOR main components, Raptor and Rictor. These changes induced by HG were accompanied by a reactive oxygen species (ROS) level increase and mitochondrial membrane potential (MMP) loss. In addition, the fragmentation of mitochondria and a decrease in mitochondrial size were observed. However, the inhibition of either ETA-R alone by ambrisentan or ETA-R/ETB-R by bosentan or the partial blockage of the mTOR function by silencing Raptor or Rictor counteracted those adverse effects on the cellular function. Altogether, our findings prove that ET-1 signaling under HG conditions leads to a significant mitochondrial dysfunction involving contributions from the mTOR pathway.


Subject(s)
Endothelin-1 , Myocytes, Cardiac , Humans , Endothelin-1/metabolism , Glucose/pharmacology , Glucose/metabolism , Myocytes, Cardiac/metabolism , Receptor, Endothelin A/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Receptor, Endothelin B
20.
J Phys Condens Matter ; 34(48)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36195080

ABSTRACT

The study of geometrically frustrated magnetic systems with unusual crystal field ground states offers a possibility of realizing the new aspects of physics of disordered systems. In this study, we report our results of structural, magnetic susceptibility, heat capacity measurements, along with density functional theory (DFT) calculations on HoVO4; a compound in which the presence of a distorted kind of HoO8polyhedral leads to multiple magnetic interaction paths. The observed broad maximum below 10 K in the temperature response of DC susceptibility curves implies the presence of short-range correlations. AC susceptibility rules out the possibility of any kind of spin freezing. Temperature dependent heat capacity measurement at zero field indicate towards the absence of long-range ordering, along with the presence of a broad maximum centered around 14 K. The residual heat capacity exhibits a characteristic power-law (Tα) behavior with the exponentαnearly equal to 2, which is analogous to that observed for other three-dimensional (3D) quantum spin liquid (QSL) systems. The DFT calculations signify the presence of dominant second and third nearest neighbor interactions, which in turn lead to magnetic frustration in our system. Our investigations suggest that HoVO4can be a candidate for realizing a 3D QSL state.

SELECTION OF CITATIONS
SEARCH DETAIL