Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 395
Filter
Add more filters











Publication year range
1.
Med Res Rev ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39188075

ABSTRACT

The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.

2.
Int J Mol Sci ; 25(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39201714

ABSTRACT

Inspired by our previous work on the modification of diarylpyrimidine-typed non-nucleoside reverse transcriptase inhibitors (NNRTIs) and the reported crystallographic studies, a series of novel amino acids (analogues)-substituted thiophene[3,2-d]pyrimidine derivatives were designed and synthesized by targeting the solvent-exposed region of the NNRTI-binding pocket. The biological evaluation results showed that compound 5k was the most active inhibitor, exhibiting moderate-to-excellent potency against HIV-1 wild-type (WT) and a panel of NNRTI-resistant strains, with EC50 values ranging from 0.042 µM to 7.530 µM. Of special note, 5k exhibited the most potent activity against single-mutant strains (K103N and E138K), with EC50 values of 0.031 µM and 0.094 µM, being about 4.3-fold superior to EFV (EC50 = 0.132 µM) and 1.9-fold superior to NVP (EC50 = 0.181 µM), respectively. In addition, 5k demonstrated lower cytotoxicity (CC50 = 27.9 µM) and higher selectivity index values. The HIV-1 reverse transcriptase (RT) inhibition assay was further performed to confirm their binding target. Moreover, preliminary structure-activity relationships (SARs) and molecular docking studies were also discussed in order to provide valuable insights for further structural optimizations. In summary, 5k turned out to be a promising NNRTI lead compound for further investigations of treatments for HIV-1 infections.


Subject(s)
Amino Acids , Anti-HIV Agents , Drug Design , HIV Reverse Transcriptase , HIV-1 , Pyrimidines , Reverse Transcriptase Inhibitors , Thiophenes , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Humans , Thiophenes/pharmacology , Thiophenes/chemistry , Thiophenes/chemical synthesis , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Structure-Activity Relationship , Amino Acids/chemistry , Molecular Docking Simulation
3.
Eur J Med Chem ; 277: 116772, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39167895

ABSTRACT

In addressing the urgent need for novel HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) to combat drug resistance, we employed CuAAC click chemistry to construct a diverse 312-member diarylpyrimidine (DAPY) derivative library. This rapid synthesis approach facilitated the identification of A6N36, demonstrating exceptional HIV-1 RT inhibitory activity. Moreover, it was demonstrated with EC50 values of 1.8-8.7 nM for mutant strains L100I, K103 N, Y181C, and E138K, being equipotent or superior to that of ETR. However, A6N36's efficacy was compromised against specific resistant strains (Y188L, F227L + V106A and RES056), highlighting a need for further optimization. Through scaffold hopping, we optimized this lead to develop 10c, which exhibited broad-spectrum activity with EC50 values ranging from 3.2 to 57.5 nM and superior water solubility. Molecular docking underscored the key interactions of 10c within the NNIBP. Our findings present 10c as a promising NNRTI lead, illustrating the power of click chemistry and rational design in combatting HIV-1 resistance.


Subject(s)
Anti-HIV Agents , Click Chemistry , HIV Reverse Transcriptase , HIV-1 , Reverse Transcriptase Inhibitors , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , HIV-1/drug effects , HIV-1/enzymology , Structure-Activity Relationship , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Molecular Structure , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Drug Discovery , Copper/chemistry , Copper/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical
4.
Eur J Med Chem ; 277: 116708, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39094273

ABSTRACT

The rapid emergence of drug resistance severely reduces the clinical response of human immunodeficiency virus-1 (HIV-1) to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Herein, a series of 2,4,6-trisubstituted pyrimidine derivatives was designed and synthesized, with the aim to identify novel anti-HIV-1 agents with improved drug resistance profiles. The antiviral activity results demonstrated that all compounds showed excellent potency to wild-type (WT) HIV-1 strain (EC50 = 3.61-15.5 nM). Moreover, 13c was proved to be the most potent inhibitor against the whole tested viral panel, with EC50 ranging from 4.68 to 229 nM. In addition, 13c yielded moderate HIV-1 RT inhibition with IC50 value of 0.231 µM, which demonstrated it was a classical NNRTI. Molecular docking was further conducted to illustrate its binding mode with HIV-1 RT. These encouraging results indicated that 13c can be used as a lead compound for further study.


Subject(s)
Anti-HIV Agents , HIV Reverse Transcriptase , HIV-1 , Molecular Docking Simulation , Pyrimidines , Reverse Transcriptase Inhibitors , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , HIV-1/drug effects , HIV-1/enzymology , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Structure-Activity Relationship , Humans , Molecular Structure , Microbial Sensitivity Tests , Dose-Response Relationship, Drug , Drug Discovery
5.
Acta Pharm Sin B ; 14(7): 3110-3124, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027243

ABSTRACT

HIV-1 reverse transcriptase (RT) has received great attention as an attractive therapeutic target for acquired immune deficiency syndrome (AIDS), but the inevitable drug resistance and side effects have always been major challenges faced by non-nucleoside reverse transcriptase inhibitors (NNRTIs). This work aimed to identify novel chemotypes of anti-HIV-1 agents with improved drug-resistance profiles, reduced toxicity, and excellent druggability. A series of diarylpyrimidine (DAPY) derivatives were prepared via structural modifications of the leads K-5a2 and 25a. Among them, 15a with dimethylphosphine oxide moiety showed the most prominent antiviral potency against all of the tested viral panel, being 1.6-fold (WT, EC50 = 1.75 nmol/L), 3.0-fold (L100I, EC50 = 2.84 nmol/L), 2.4-fold (K103N, EC50 = 1.27 nmol/L), 3.3-fold (Y181C, EC50 = 5.38 nmol/L), 2.9-fold (Y188L, EC50 = 7.96 nmol/L), 2.5-fold (E138K, EC50 = 4.28 nmol/L), 4.8-fold (F227L/V106A, EC50 = 3.76 nmol/L) and 5.3-fold (RES056, EC50 = 15.8 nmol/L) more effective than that of the marketed drug ETR. Molecular docking results illustrated the detailed interactions formed by compound 15a and WT, F227L/V106A, and RES056 RT. Moreover, 15a·HCl carried outstanding pharmacokinetic (t 1/2 = 1.32 h, F = 40.8%) and safety profiles (LD50 > 2000 mg/kg), which demonstrated that 15a HCl is a potential anti-HIV-1 drug candidate.

6.
Eur J Med Chem ; 276: 116668, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38996652

ABSTRACT

Starting from our previously reported nonnucleoside reverse transcriptase inhibitor (NNRTI, 3), continuous efforts were made to enhance its potency and safety through a structure-based drug design strategy. This led to the discovery of a series of novel piperidine-biphenyl-diarylpyrimidines (DAPYs). Compound 10p, the most active compound in this series, exhibited an EC50 value of 6 nM against wide-type HIV-1 strain, which was approximately 560-fold more potent than the initial compound 3 (EC50 = 3.36 µM). Furthermore, significant improvements were observed in cytotoxicity and selectivity (CC50 > 202.17 µM, SI > 33144) compared to compound 3 (CC50 = 14.84 µM, SI = 4). Additionally, compound 10p demonstrated increased inhibitory activity against clinically mutant virus strains (EC50 = 7-63 nM). Further toxicity evaluation revealed that compound 10p exhibited minimal CYP enzyme and hERG inhibition. Importantly, single-dose acute toxicity testing did not result in any fatalities or noticeable pathological damage in mice. Therefore, compound 10p can be regarded as a lead candidate for guiding further development of biphenyl-diarylpyrimidine NNRTIs with favorable druggability for HIV therapy.


Subject(s)
Anti-HIV Agents , Biphenyl Compounds , Drug Discovery , HIV Reverse Transcriptase , HIV-1 , Piperidines , Pyrimidines , Reverse Transcriptase Inhibitors , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Structure-Activity Relationship , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/chemical synthesis , Humans , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Animals , HIV-1/drug effects , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Mice , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Piperazines/chemistry , Piperazines/pharmacology , Piperazines/chemical synthesis , Piperazine/chemistry , Piperazine/pharmacology
7.
J Med Virol ; 96(8): e29830, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39072764

ABSTRACT

In the current antiretroviral landscape, continuous efforts are still needed to search for novel chemotypes of human immunodeficiency virus type 1 (HIV-1) inhibitors with improved drug resistance profiles and favorable drug-like properties. Herein, we report the design, synthesis, biological characterization, and druggability evaluation of a class of non-nucleoside reverse transcriptase inhibitors. Guided by the available crystallographic information, a series of novel indolylarylsulfone derivatives were rationally discovered via the substituent decorating strategy to fully explore the chemical space of the entrance channel. Among them, compound 11h bearing the cyano-substituted benzyl moiety proved to be the most effective inhibitor against HIV-1 wild-type and mutant strains (EC50 = 0.0039-0.338 µM), being far more potent than or comparable to etravirine and doravirine. Besides, 11h did not exhibit cytotoxicity at the maximum test concentration. Meanwhile, the binding target of 11h was further confirmed to be reverse transcriptase (IC50 = 0.055 µM). Preliminary structure-activity relationship were discussed to guide further optimization work. Molecular docking and dynamics simulation studies were investigated in detail to rationalize the biological evaluation results. Further drug-likeness assessment indicated that 11h possessed excellent physicochemical properties. Moreover, no apparent hERG blockade liability and cytochrome P450 inhibition were observed for 11h. Notably, 11h was characterized by favorable in vitro metabolic stability with moderate clearance rates and long half-lives in human plasma and liver microsomes. Overall, 11h holds great promise as an ideal Anti-HIV-1 lead compound due to its potent antiviral efficacy, low toxicity, and favorable drug-like profiles.


Subject(s)
Anti-HIV Agents , Drug Design , HIV-1 , Molecular Docking Simulation , Reverse Transcriptase Inhibitors , Sulfones , HIV-1/drug effects , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Structure-Activity Relationship , Sulfones/pharmacology , Sulfones/chemical synthesis , Sulfones/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism
8.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731613

ABSTRACT

Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 µM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.


Subject(s)
Anti-HIV Agents , Molecular Docking Simulation , Pyrimidines , Quantitative Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Humans , Molecular Dynamics Simulation , Ribonuclease H/antagonists & inhibitors , Ribonuclease H/metabolism , Drug Design , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Molecular Structure
9.
Bioorg Chem ; 148: 107495, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805850

ABSTRACT

Targeting Ribonuclease H (RNase H) has been considered a viable strategy for HIV therapy. In this study, a series of novel thiazolo[3, 2-a]pyrimidine derivatives were firstly designed and synthesized as potential inhibitors of HIV-1 RNase H. Among these compounds, A28 exhibited the most potent inhibition against HIV-1 RNase H with an IC50 value of 4.14 µM, which was about 5-fold increase in potency than the hit compound A1 (IC50 = 21.49 µM). To gain deeper insights into the structure-activity relationship (SAR), a CoMFA model was constructed to yield reasonable statistical results (q2 = 0.658 and R2 = 0.969). Results from magnesium ion chelation experiments and molecular docking studies revealed that these thiazolopyrimidine inhibitors may exert their inhibitory activity by binding to an allosteric site on RNase H at the interface between subunits p51 and p66. Furthermore, this analog demonstrated favorable physicochemical properties. Our findings provide valuable groundwork for further development of allosteric inhibitors targeting HIV-1 RNase H.


Subject(s)
Drug Design , HIV-1 , Molecular Docking Simulation , Pyrimidines , Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , HIV-1/drug effects , HIV-1/enzymology , Humans , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Molecular Structure , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Ribonuclease H/antagonists & inhibitors , Ribonuclease H/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ribonuclease H, Human Immunodeficiency Virus/antagonists & inhibitors , Ribonuclease H, Human Immunodeficiency Virus/metabolism
10.
J Med Virol ; 96(4): e29594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576317

ABSTRACT

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC50 = 0.040 µM, SI = 2815), surpassing that of PF74 (EC50 = 0.50 µM, SI = 258). Furthermore, when evaluated against the HIV-2 strain, 7t (EC50 = 0.13 µM) demonstrated approximately 14-fold higher potency than that of PF74 (EC50 = 1.76 µM). Insights obtained from surface plasmon resonance (SPR) revealed that 7t exhibited stronger target affinity to the CA hexamer and monomer in comparison to PF74. The potential interactions between 7t and the HIV-1 CA were further elucidated using molecular docking and molecular dynamics simulations, providing a plausible explanation for the enhanced target affinity with 7t over PF74. Moreover, the metabolic stability assay demonstrated that 7t (T1/2 = 77.0 min) significantly outperforms PF74 (T1/2 = 0.7 min) in human liver microsome, exhibiting an improvement factor of 110-fold. In conclusion, 7t emerges as a promising drug candidate warranting further investigation.


Subject(s)
Anti-HIV Agents , HIV Seropositivity , Humans , Capsid/metabolism , Phenylalanine/pharmacology , Phenylalanine/metabolism , Molecular Docking Simulation , Anti-HIV Agents/pharmacology , Capsid Proteins/metabolism , Anti-Retroviral Agents
11.
J Med Chem ; 67(8): 6570-6584, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38613773

ABSTRACT

NNRTI is an important component of the highly active antiretroviral therapy (HAART), but the rapid emergence of drug resistance and poor pharmacokinetics limited their clinical application. Herein, a series of novel aryl triazolone dihydropyridines (ATDPs) were designed by structure-guided design with the aim of improving drug resistance profiles and pharmacokinetic profiles. Compound 10n (EC50 = 0.009-17.7 µM) exhibited the most active potency, being superior to or comparable to that of doravirine (DOR) against the whole tested viral panel. Molecular docking was performed to clarify the reason for its higher resistance profiles. Moreover, 10n demonstrated excellent pharmacokinetic profile (T1/2 = 5.09 h, F = 108.96%) compared that of DOR (T1/2 = 4.4 h, F = 57%). Additionally, 10n was also verified to have no in vivo acute or subacute toxicity (LD50 > 2000 mg/kg), suggesting that 10n is worth further investigation as a novel oral NNRTIs for HIV-1 therapy.


Subject(s)
Anti-HIV Agents , Dihydropyridines , HIV-1 , Molecular Docking Simulation , Reverse Transcriptase Inhibitors , Triazoles , HIV-1/drug effects , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/pharmacokinetics , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacokinetics , Dihydropyridines/chemistry , Dihydropyridines/pharmacology , Dihydropyridines/pharmacokinetics , Structure-Activity Relationship , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Animals , Male , Drug Discovery , Molecular Structure , Mice
12.
Bioorg Chem ; 147: 107340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593532

ABSTRACT

In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.


Subject(s)
Anti-HIV Agents , Biphenyl Compounds , Drug Design , HIV Reverse Transcriptase , HIV-1 , Quinazolines , Reverse Transcriptase Inhibitors , Solubility , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Structure-Activity Relationship
13.
J Med Virol ; 96(3): e29502, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450817

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of anti-acquired immunodeficiency syndrome treatment regimen. In the present work, with the previously reported compound K-16c as lead, a series of novel 2,4,5-trisubstituted pyrimidine derivatives were designed based on the cocrystal structure of K-16c/RT, with the aim to improve the anti-human immunodeficiency virus type-1 (HIV-1) activities and metabolic stability properties. Compound 11b1 exhibited the most potent antiviral activity against wild-type (WT) and a panel of single mutant HIV-1 strains (EC50 = 2.4-12.4 nM), being superior to or comparable to those of the approved drug etravirine. Meanwhile, 11b1 exhibited moderate cytotoxicity (CC50 = 4.96 µM) and high selectivity index (SI = 1189) toward HIV-1 WT strain. As for HIV-1 RT inhibition test, 11b1 possessed excellent inhibitory potency (IC50 = 0.04 µM) and confirmed its target was RT. Moreover, the molecular dynamics simulation was performed to elucidate the improved drug resistance profiles. Moreover, 11b1 was demonstrated with favorable safety profiles and pharmacokinetic properties in vivo, indicating that 11b1 is a potential anti-HIV-1 drug candidate worthy of further development.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV-1 , Humans , Antihypertensive Agents , Molecular Dynamics Simulation , Nucleosides
14.
Acta Pharm Sin B ; 14(3): 1257-1282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486991

ABSTRACT

With our continuous endeavors in seeking potent anti-HIV-1 agents, we reported here the discovery, biological characterization, and druggability evaluation of a class of nonnucleoside reverse transcriptase inhibitors. To fully explore the chemical space of the NNRTI-binding pocket, novel series of dihydrothiopyrano [3,2-d]pyrimidines were developed by employing the structure-based design strategy. Most of the derivatives were endowed with prominent antiviral activities against HIV-1 wild-type and resistant strains at nanomolar levels. Among them, compound 23h featuring the aminopiperidine moiety was identified as the most potent inhibitor, with EC50 values ranging from 3.43 to 21.4 nmol/L. Especially, for the challenging double-mutants F227L + V106A and K103N + Y181C, 23h exhibited 2.3- to 14.5-fold more potent activity than the first-line drugs efavirenz and etravirine. Besides, the resistance profiles of 23h achieved remarkable improvement compared to efavirenz and etravirine. The binding target of 23h was further confirmed to be HIV-1 reverse transcriptase. Molecular modeling studies were also performed to elucidate the biological evaluation results and give guidance for the optimization campaign. Furthermore, no apparent inhibition of the major CYP450 enzymes and hERG channel was observed for 23h. Most importantly, 23h was characterized by good pharmacokinetic properties and excellent safety in vivo. Collectively, 23h holds great promise as a potential candidate for its effective antiviral efficacy and favorable drug-like profiles.

15.
Chem Biol Drug Des ; 103(3): e14510, 2024 03.
Article in English | MEDLINE | ID: mdl-38519265

ABSTRACT

In this study, a novel series of diarylpyrimidine derivatives with Fsp3-enriched spirocycles were designed and synthesized to further explore the chemical space of the hydrophobic channel of the NNRTI-binding pocket. The biological evaluation results showed that most of the compounds displayed effective inhibitory potency against the HIV-1 wild-type strain, with EC50 values ranging from micromolar to submicromolar levels. Among them, TT6 turned out to be the most effective inhibitor with an EC50 value of 0.17 µM, demonstrating up to 47 times more active than that of reference drug 3TC (EC50 = 8.01 µM). More encouragingly, TT6 was found to potently inhibit the HIV-1 mutant strain K103N with an EC50 value of 0.69 µM, being about 6-fold more potent than 3TC (EC50 = 3.68 µM) and NVP (EC50 = 4.62 µM). Furthermore, TT6 exhibited the most potent inhibitory activity toward HIV-1 reverse transcriptase with an IC50 value of 0.33 µM. Additionally, molecular simulation studies were conducted to investigate the binding modes between TT6 and NNRTI-binding pocket, which may provide valuable clues for the follow-up structural optimizations.


Subject(s)
Anti-HIV Agents , HIV-1 , Anti-HIV Agents/chemistry , Structure-Activity Relationship , Drug Design , Reverse Transcriptase Inhibitors/chemistry , Molecular Docking Simulation , HIV Reverse Transcriptase/metabolism
16.
Acta Pharm Sin B ; 13(12): 4906-4917, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045058

ABSTRACT

Following on our recently developed biphenyl-ATDP non-nucleoside reverse transcriptase inhibitor ZLM-66 (SI = 2019.80, S = 1.9 µg/mL), a series of novel heterocycle-substituted ATDP derivatives with significantly improved selectivity and solubility were identified by replacement of the biphenyl moiety of ZLM-66 with heterocyclic group with lower lipophilicity. Evidently, the representative analog 7w in this series exhibited dramatically enhanced selectivity and solubility (SI = 12,497.73, S = 4472 µg/mL) in comparison with ZLM-66 (SI = 2019.80, S = 1.9 µg/mL). This new NNRTI conferred low nanomolar inhibition of wild-type HIV-1 strain and tested mutant strains (K103N, L100I, Y181C, E138K, and K103N + Y181C). The analog also demonstrated favorable safety and pharmacokinetic profiles, as evidenced by its insensitivity to CYP and hERG, lack of mortality and pathological damage, and good oral bioavailability in rats (F = 27.1%). Further development of 7w for HIV therapy will be facilitated by this valuable information.

17.
J Med Chem ; 66(23): 16303-16329, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38054267

ABSTRACT

Optimization of compound 11L led to the identification of novel HIV capsid modulators, quinazolin-4-one-bearing phenylalanine derivatives, displaying potent antiviral activities against both HIV-1 and HIV-2. Notably, derivatives 12a2 and 21a2 showed significant improvements, with 2.5-fold over 11L and 7.3-fold over PF74 for HIV-1, and approximately 40-fold over PF74 for HIV-2. The X-ray co-crystal structures confirmed the multiple pocket occupation of 12a2 and 21a2 in the binding site. Mechanistic studies revealed a dual-stage inhibition profile, where the compounds disrupted capsid-host factor interactions at the early stage and promoted capsid misassembly at the late stage. Remarkably, 12a2 and 21a2 significantly promoted capsid misassembly, outperforming 11L, PF74, and LEN. The substitution of easily metabolized amide bond with quinolin-4-one marginally enhanced the stability of 12a2 in human liver microsomes compared to controls. Overall, 12a2 and 21a2 highlight their potential as potent HIV capsid modulators, paving the way for future advancements in anti-HIV drug design.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Capsid/metabolism , Phenylalanine , Capsid Proteins/metabolism , Anti-HIV Agents/chemistry , HIV Infections/drug therapy
18.
Bioorg Med Chem ; 96: 117484, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37976805

ABSTRACT

HIV-1 reverse transcriptase (RT) is considered as one of the most significant targets for the anti-HIV-1 drug design due to their determined mechanism and well-decoded crystal structure. As a part of our continuous efforts towards the development of potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) by exploiting the tolerant region I of NNRTIs binding pocket (NNIBP), the miniaturized parallel synthesis via CuAAC click chemistry reaction followed by in situ biological screening have been performed in this work. The in situ enzyme inhibition screening results showed that 14 compounds exhibited higher or equivalent inhibitory activity compared to the lead K-5a2 and ETR. Anti-HIV-1 activity results indicated that C1N51 displayed the most potent activity (EC50 = 0.01-0.26 µM) against wild-type and a panel of NNRTIs-resistant strains. Moreover, the molecular simulation demonstrated that the newly introduced triazole ring could develop new hydrogen bonds with Lys103 and Pro236, which explained the feasibility of introducing triazole in the tolerant region I of the RT binding pocket.


Subject(s)
Anti-HIV Agents , HIV-1 , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Triazoles/pharmacology , Triazoles/chemistry , Click Chemistry , Drug Design , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , HIV Reverse Transcriptase , Heterocyclic Compounds, 1-Ring , Structure-Activity Relationship
19.
Bioorg Chem ; 141: 106918, 2023 12.
Article in English | MEDLINE | ID: mdl-37866206

ABSTRACT

A series of 4-phenylcoumarin derivatives was synthesized and evaluated for their cellular anti-HIV-1 and HIV-2 activities as well as their inhibitory effects against HIV-1 reverse transcriptase (RT). The hydrazone compound 8b and the ethylthiosemicarbazide derivative 4c showed the best inhibition activity against wild-type (WT) HIV-1. The promising compounds were further evaluated against HIV-1 RT and exhibited significant inhibitory activity with compound 8b showing comparable effect to the reference NNRTI Efavirenz (IC50 = 9.01 nM). Structure activity relationship study revealed the importance of 6-chloro and 4-phenyl substituents for optimum activity, as well as the 5-atoms linker (=N-NH-CO-CH2-O-) at position 7 of coumarin scaffold that can support the rotation and flexibility of compound 8b to fit well in the binding pocket. The molecular docking of compound 8b demonstrated a typical seahorse binding mode with better binding interactions that covered more residues when compared to Efavirenz.


Subject(s)
Anti-HIV Agents , HIV-1 , Molecular Docking Simulation , Reverse Transcriptase Inhibitors/chemistry , Coumarins/pharmacology , Structure-Activity Relationship , HIV Reverse Transcriptase , Drug Design , Anti-HIV Agents/chemistry
20.
Bioorg Chem ; 140: 106821, 2023 11.
Article in English | MEDLINE | ID: mdl-37659148

ABSTRACT

To enhance the anti-HIV-1 efficacy and solubility of our previously documented NNRTI 1, a collection of innovative quinoline-substituted DAPY derivatives were devised using heteroaromatic replacement strategy. The results of biological evaluation revealed that the representative compound 5h possessed the highest inhibitory activity against wild-type HIV-1 and selectivity index (EC50 = 0.0018 µM, SI > 166667), which were obviously better than that of 1 (EC50 = 0.00978 µM, SI > 37764), NVP (EC50 = 0.059 µM, SI > 158), EFV (EC50 = 0.028 µM, SI > 269), and ETR (EC50 = 0.0029 µM, SI > 1519). The water solubility of compound 5h was remarkably improved, surpassing that of 1, ETR and RPV. Additionally, this compound exerted significantly enhanced anti-resistance potency, compared to 1, and displayed comparable activity to ETR against WT RT of HIV-1 (IC50 = 0.011 µM). To elucidate the underlying molecular mechanisms, molecular docking studies were conducted to investigate the crucial interactions between 5h and WT/mutant strains of HIV-1. These findings provide valuable insights and drive further advancements in the development of DAPYs for HIV therapy.


Subject(s)
HIV-1 , Hydroxyquinolines , Quinolines , Solubility , Molecular Docking Simulation , Quinolines/pharmacology , Naphthalenes , Water
SELECTION OF CITATIONS
SEARCH DETAIL