Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Cerebellum ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177731

ABSTRACT

BACKGROUND: Gillespie syndrome is a rare disorder caused by pathogenic variants in ITPR1 gene and characterized by the typical association of cerebellar ataxia, bilateral aniridia and intellectual disability. Since its first description in 1965, less than 100 patients have been reported and only 30 with a molecular confirmation. METHODS: We present two additional cases, both carrying a loss-of-function variant in the Gly2539 amino acid residue. We describe the clinical evolution of the patients, one of whom is now 17 years old, and discuss the updated phenotypic spectrum of the disorder. RESULTS: The study gives an overview on the condition, allowing to confirm important data, such as an overall positive evolution of development (with some patient not presenting intellectual disability), a clinical stability of the neurological signs (regardless of a possible progression of cerebellar atrophy) and ocular aspects, and a low prevalence of general health comorbidities. DISCUSSION: Data about development and the observation of middle-aged patients lend support to the view that Gillespie is to be considered a non-progressive cerebellar ataxia, making this concept a key point for both clinicians and therapists, and for the families.

2.
Front Neurol ; 14: 1279616, 2023.
Article in English | MEDLINE | ID: mdl-37965172

ABSTRACT

Introduction: Within Pediatric Cerebellar Ataxias (PCAs), patients with non-progressive ataxia (NonP) surprisingly show postural motor behavior comparable to that of healthy controls, differently to slow-progressive ataxia patients (SlowP). This difference may depend on the building of compensatory strategies of the intact areas in NonP brain network. Methods: Eleven PCAs patients were recruited: five with NonP and six with SlowP. We assessed volumetric and axonal bundles alterations with a multimodal approach to investigate whether eventual spared connectivity between basal ganglia and cerebellum explains the different postural motor behavior of NonP and SlowP patients. Results: Cerebellar lobules were smaller in SlowP patients. NonP patients showed a lower number of streamlines in the cerebello-thalamo-cortical tracts but a generalized higher integrity of white matter tracts connecting the cortex and the basal ganglia with the cerebellum. Discussion: This work reveals that the axonal bundles connecting the cerebellum with basal ganglia and cortex demonstrate a higher integrity in NonP patients. This evidence highlights the importance of the cerebellum-basal ganglia connectivity to explain the different postural motor behavior of NonP and SlowP patients and support the possible compensatory role of basal ganglia in patients with stable cerebellar malformation.

3.
Front Neurol ; 14: 1199095, 2023.
Article in English | MEDLINE | ID: mdl-37545716

ABSTRACT

Infantile idiopathic nystagmus (IIN) is an oculomotor disorder characterized by involuntary bilateral, periodic ocular oscillations, predominantly on the horizontal axis. X-linked IIN (XLIIN) is the most common form of congenital nystagmus, and the FERM domain-containing gene (FRMD7) is the most common cause of pathogenesis, followed by mutations in GPR143. To date, more than 60 pathogenic FRMD7 variants have been identified, and the physiopathological pathways leading to the disease are not yet completely understood. FRMD7-associated nystagmus usually affects male patients, while it shows incomplete penetrance in female patients, who are mostly asymptomatic but sometimes present with mild ocular oscillations or, occasionally, with clear nystagmus. Here we report the first case of a patient with Turner syndrome and INN in an XLIIN pedigree, in which we identified a novel frameshift mutation (c.1492dupT) in the FRMD7 gene: the absence of one X chromosome in the patient unmasked the presence of the familial genetic nystagmus.

4.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37301203

ABSTRACT

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/diagnosis , Cerebellar Ataxia/genetics , Phenotype , Ataxia/genetics , Genetic Testing , ATPases Associated with Diverse Cellular Activities/genetics , ATP-Dependent Proteases/genetics , Ubiquitin-Protein Ligases/genetics
5.
Autism Res ; 16(7): 1344-1359, 2023 07.
Article in English | MEDLINE | ID: mdl-37260303

ABSTRACT

The purpose of this study was to identify developmental profiles associated with autism spectrum disorder (ASD) and global developmental delay (DD) in pre-school aged Italian children. Developmental profiles were evaluated by means of a standardized tool widely used for the assessment of psychomotor development in early childhood, the Griffiths III scales, recently adapted and standardized for the Italian population. Specifically, we compared the Griffiths III profiles of children with ASD and DD (ASD + DD) with those of children with DD alone. Moreover, we inspected the psychometric function of single items by comparing children with ASD + DD and children with DD with typically developing (TD) children from the Griffiths III normative sample. In this way, we aimed to isolate the effects of each diagnostic class on psychomotor abilities and on the psychometric function of single items. The ASD + DD and DD groups were found to share the presence of lower age equivalent scores relative to their chronological age in all the developmental domains considered: Foundations of Learning, Language and Communication, Eye and Hand Coordination, Personal-Social-Emotional and Gross Motor Skills. However, the DD group displayed a homogeneous profile with similar levels of delay in all developmental domains, while children with ASD + DD exhibited relative weaknesses in the Language and Communication and Personal-Social-Emotional scales. The analysis of the psychometric function drawn for each item has confirmed different profiles in social-communicative and non-verbal items between the two diagnostic groups and in relation to TD normative sample. The Griffiths III is a valid psychometric tool for identifying atypical developmental profiles and its use may be recommended during the diagnostic process of ASD and DD, to detect specific strengths and weaknesses and guide person-centered treatment.


Subject(s)
Autism Spectrum Disorder , Humans , Child, Preschool , Child , Developmental Disabilities , Communication , Emotions , Language
6.
Diagnostics (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37174959

ABSTRACT

BACKGROUND: The present mono-institutional report aimed to describe the cognitive and behavioral outcomes of low-grade central nervous system (CNS) tumors in a cohort of children treated exclusively with surgical intervention. METHODS: Medical records from 2000-2020 were retrospectively analyzed. We included 38 children (mean age at first evaluation 8 years and 3 months, 16 females) who had undergone presurgical cognitive-behavioral evaluation and/or at least 6 months follow-up. Exclusion criteria were a history of traumatic brain injury, stroke, cerebral palsy or cancer-predisposing syndromes. RESULTS: The sample presented cognitive abilities and behavioral functioning in the normal range, with weaknesses in verbal working memory and processing speed. The obtained results suggest that cognitive and behavioral functioning is related to pre-treatment variables (younger age at symptoms' onset, glioneuronal histological type, cortical location with preoperative seizures), timing of surgery and seizure control after surgery, and is stable when controlling for a preoperative cognitive and behavioral baseline. Younger age at onset is confirmed as a particular vulnerability in determining cognitive sequelae, and children at older ages or at longer postsurgical follow-up are at higher risk for developing behavioral disturbances. CONCLUSIONS: Timely treatment is an important factor influencing the global outcome and daily functioning of the patients. Preoperative and regular postsurgical cognitive and behavioral assessment, also several years after surgery, should be included in standard clinical practices.

7.
Neurol Genet ; 9(2): e200049, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37090941

ABSTRACT

Background and Objectives: Heterozygous mutations or deletions of the EBF3 gene are known to cause a syndrome characterized by intellectual disability, neurodevelopmental disorders, facial dysmorphisms, hypotonia, and ataxia; the latter is quite common despite in most patients brain MRI is reported to be normal. Despite the predominant neurologic involvement of EBF3-related syndrome, a systematic definition of neurologic, cognitive/behavioral, and neuroradiologic features is lacking. Methods: We report on 6 patients (2 females and 4 males, age range 2-12 years), of whom 4 carrying a heterozygous point mutation of the EBF3 gene and 2 with 10q26 deletion encompassing the gene, diagnosed at Carlo Besta Neurologic Institute of Milan, Italy. Clinical evaluation was performed by a pediatric neurologist and pediatric dysmorphologist; ataxia severity was rated by Scale for the Assessment and Rating of Ataxia (SARA); brain MRIs were reviewed by expert neuroradiologists; general quotient levels were obtained through standardized Griffiths Mental Development Scales. Patients carrying a 10q26.3 deletion were diagnosed by array-CGH, whereas EBF3 variants were detected by whole exome sequencing. Results: Phenotype was consistent in all patients, but with wide variability in severity. Developmental milestones were invariably delayed and resulted in an extremely variable cognitive impairment. All patients showed ataxic signs, as confirmed by SARA scores, often associated with hypotonia. Brain MRI revealed in all children a cerebellar malformation with vermis hypoplasia and a peculiar foliation anomaly characterized by a radial disposition of cerebellar folia (dandelion sign). Neurophysiologic examinations were unremarkable. Discussion: EBF3-related syndrome has been so far described as a neurodevelopmental condition with dysmorphic traits, with limited emphasis on the neurologic features; we highlight the predominant neurologic involvement of these patients, which can be explained at least in part by the underlying cerebellar malformation. We therefore propose that EBF3-related syndrome should be classified and treated as a congenital, nonprogressive ataxia.

8.
Am J Med Genet A ; 191(5): 1350-1354, 2023 05.
Article in English | MEDLINE | ID: mdl-36680497

ABSTRACT

The ubiquitin-specific protease USP9X has been found to play a role in multiple aspects of neural development including processes of neuronal migrations. In males, hemizygous partial loss of function variants in USP9X lead to a clinical phenotype primarily characterized by intellectual disability, hypotonia, speech and language impairment, behavioral disturbances accompanied by additional clinical features with variable expressivity. Structural brain abnormalities are reported in all cases where neuro-imaging was performed. The most common radiological features described include hypoplasia/agenesis of the corpus callosum, widened ventricles, white matter disturbances, and cerebellar hypoplasia. Here we report a child harboring a missense variant in USP9X presenting with the classical neurodevelopmental phenotype and a previously unreported radiological picture of periventricular heterotopia. This case expands the phenotypic landscape of this emergent condition and supports the critical role of USP9X in neuronal migration processes.


Subject(s)
Intellectual Disability , Periventricular Nodular Heterotopia , Humans , Child , Male , Periventricular Nodular Heterotopia/diagnostic imaging , Periventricular Nodular Heterotopia/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/complications , Mutation, Missense , Developmental Disabilities/genetics , Radiography , Ubiquitin Thiolesterase/genetics
9.
J Autism Dev Disord ; 53(2): 615-623, 2023 Feb.
Article in English | MEDLINE | ID: mdl-33394245

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a strong genetic basis. We accurately assessed 209 ASD subjects, categorized in complex (47) and essential (162), and performed array comparative genomic hybridization to identify pathogenic and recurrent Copy Number Variants (CNVs). We found 117 CNVs in 75 patients, 11 classified as pathogenic. The complex ASD subjects have higher frequency of pathogenic CNVs with a diagnostic yield of 12.8%. Familiality, cognitive and verbal abilities, severity of autistic symptoms, neuroimaging and neurophysiological findings are not related to genetic data. This study identifies loci of interest for ASD and highlights the importance of a careful phenotypic characterization, as complex ASD is related to higher rate of pathogenic CNVs.


Subject(s)
Autism Spectrum Disorder , Child Development Disorders, Pervasive , Humans , Child , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Comparative Genomic Hybridization/methods , DNA Copy Number Variations/genetics , Cognition
10.
Hum Mutat ; 43(12): 2222-2233, 2022 12.
Article in English | MEDLINE | ID: mdl-36259739

ABSTRACT

Trichothiodystrophy (TTD) is a rare hereditary disease whose prominent feature is brittle hair. Additional clinical signs are physical and neurodevelopmental abnormalities and in about half of the cases hypersensitivity to UV radiation. The photosensitive form of TTD (PS-TTD) is most commonly caused by mutations in the ERCC2/XPD gene encoding a subunit of the transcription/DNA repair complex TFIIH. Here we report novel ERCC2/XPD mutations affecting proper protein folding, which generate thermo-labile forms of XPD associated with thermo-sensitive phenotypes characterized by reversible aggravation of TTD clinical signs during episodes of fever. In patient cells, the newly identified XPD variants result in thermo-instability of the whole TFIIH complex and consequent temperature-dependent defects in DNA repair and transcription. Improving the protein folding process by exposing patient cells to low temperature or to the chemical chaperone glycerol allowed rescue of TFIIH thermo-instability and a concomitant recovery of the complex activities. Besides providing a rationale for the peculiar thermo-sensitive clinical features of these new cases, the present findings demonstrate how variations in the cellular concentration of mutated TFIIH impact the cellular functions of the complex and underlie how both quantitative and qualitative TFIIH alterations contribute to TTD clinical features.


Subject(s)
Hair Diseases , Skin Diseases , Trichothiodystrophy Syndromes , Xeroderma Pigmentosum , Humans , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , Trichothiodystrophy Syndromes/genetics , Trichothiodystrophy Syndromes/complications , DNA Repair , Hair Diseases/genetics , Transcription, Genetic , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/metabolism
11.
Eur J Hum Genet ; 30(11): 1233-1238, 2022 11.
Article in English | MEDLINE | ID: mdl-35821519

ABSTRACT

RAI1 is a dosage-sensitive gene whose decreased or increased expression by recurrent and non-recurrent 17p11.2 deletions or duplications causes Smith-Magenis (SMS) or Potocki-Lupski syndromes (PTLS), respectively. Here we report on a 21-year-old female patient showing SMS phenotype who was found to carry a 3.4 kb de novo intragenic RAI1 deletion. Interestingly, a significant increase in RAI1 transcript levels was identified in the patient's, brother's and mother's peripheral blood cells. Allele-specific dosage analysis revealed that the patient's maternally inherited overexpressed RAI1 allele harbors the intragenic deletion, confirming the SMS diagnosis due to the presence of a single wild-type RAI1 functional allele. The mother and brother do not present any PTLS neurologic/behavioral clinical features. Extensive sequencing of RAI1 promoter and predicted regulatory regions showed no potential causative variants accounting for gene overexpression. However, the mother and both children share a novel private missense variant in RAI1 exon 3, currently classified as a VUS (uncertain significance), though predicted by two bioinformatic tools to disrupt the binding site of one specific transcription factor. The reported familial case, the second showing RAI1 overexpression in the absence of RAI1 duplication, may help to understand the regulation of RAI1 dosage sensitivity although its phenotypic effect remains to be determined.


Subject(s)
Abnormalities, Multiple , Smith-Magenis Syndrome , Male , Female , Humans , Trans-Activators/genetics , Alleles , Maternal Inheritance , Abnormalities, Multiple/genetics , Phenotype , Smith-Magenis Syndrome/diagnosis , Smith-Magenis Syndrome/genetics
12.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682590

ABSTRACT

KBG syndrome (KBGS) is a neurodevelopmental disorder caused by the Ankyrin Repeat Domain 11 (ANKRD11) haploinsufficiency. Here, we report the molecular investigations performed on a cohort of 33 individuals with KBGS clinical suspicion. By using a multi-testing genomic approach, including gene sequencing, Chromosome Microarray Analysis (CMA), and RT-qPCR gene expression assay, we searched for pathogenic alterations in ANKRD11. A molecular diagnosis was obtained in 22 out of 33 patients (67%). ANKRD11 sequencing disclosed pathogenic or likely pathogenic variants in 18 out of 33 patients. CMA identified one full and one terminal ANKRD11 pathogenic deletions, and one partial duplication and one intronic microdeletion, with both possibly being pathogenic. The pathogenic effect was established by RT-qPCR, which confirmed ANKRD11 haploinsufficiency only for the three deletions. Moreover, RT-qPCR applied to six molecularly unsolved KBGS patients identified gene downregulation in a clinically typical patient with previous negative tests, and further molecular investigations revealed a cryptic deletion involving the gene promoter. In conclusion, ANKRD11 pathogenic variants could also involve the regulatory regions of the gene. Moreover, the application of a multi-test approach along with the innovative use of RT-qPCR improved the diagnostic yield in KBGS suspected patients.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Tooth Abnormalities , Abnormalities, Multiple/genetics , Chromosome Deletion , Facies , Humans , Intellectual Disability/genetics , Phenotype , Repressor Proteins/genetics , Tooth Abnormalities/diagnosis , Tooth Abnormalities/genetics , Transcription Factors/genetics
13.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Article in English | MEDLINE | ID: mdl-35146895

ABSTRACT

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Subject(s)
Epilepsy , Infant, Newborn, Diseases , Intellectual Disability , TRPM Cation Channels , Child , Developmental Disabilities/genetics , Humans , Infant, Newborn , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Mutation, Missense , TRPM Cation Channels/genetics , Exome Sequencing
14.
Mol Genet Metab ; 134(4): 353-358, 2021 12.
Article in English | MEDLINE | ID: mdl-34865968

ABSTRACT

Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by dominant variants in the Glial Fibrillary Acidic Protein gene. Three main classifications are currently used, the traditional one defined by the age of onset, and two more recent ones based on both clinical features at onset and brain MRI findings. In this study, we retrospectively included patients with genetically confirmed pediatric-onset AxD. Twenty-one Italian patients were enrolled, and we revised all their clinical and radiological data. Participants were divided according to the current classification systems. We qualitatively analyzed data on neurodevelopment and neurologic decline in order to identify the possible trajectories of the evolution of the disease over time. One patient suffered from a Neonatal presentation and showed a rapidly evolving course which led to death within the second year of life (Type Ia). 16 patients suffered from the Infantile presentation: 5 of them (here defined Type Ib) presented developmental delay and began to deteriorate by the age of 5. A second group (Type Ic) included patients who presented a delay in neuromotor development and started deteriorating after 6 years of age. A third group (Type Id) included patients who presented developmental delay and remained clinically stable beyond adolescence. In 4 patients, the age at last evaluation made it not possible to ascertain whether they belonged to Type Ic or Id, as they were too young to evaluate their neurologic decline. 4 patients suffered from the Juvenile presentation: they had normal neuromotor development with no or only mild cognitive impairment; the subsequent clinical evolution was similar to Type Ic AxD in 2 patients, to Id group in the other 2. In conclusion, our results confirm previously described findings about clinical features at onset; based on follow-up data we might classify patients with Type I AxD into four subgroups (Ia, Ib, Ic, Id). Further studies will be needed to confirm our results and to better highlight the existence of clinical and neuroradiological prognostic factors able to predict disease progression.


Subject(s)
Alexander Disease/complications , Adolescent , Adult , Alexander Disease/classification , Child , Child, Preschool , Disease Progression , Female , Glial Fibrillary Acidic Protein/genetics , Humans , Infant , Infant, Newborn , Male , Mutation , Retrospective Studies , Young Adult
15.
Epilepsy Behav ; 124: 108315, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34619538

ABSTRACT

BACKGROUND: Epilepsy is a main feature of Mowat Wilson Syndrome (MWS), a congenital malformation syndrome caused by ZEB2 variants. The aim of this study was to investigate the long-term evolution of the electroclinical phenotype of MWS in a large population. METHODS: Forty-individuals with a genetically confirmed diagnosis were enrolled. Three age groups were identified (t1 = 0-4; t2 = 5-12; t3 = >13 years); clinical data and EEG records were collected, analyzed, and compared for age group. Video-EEG recorded seizures were reviewed. RESULTS: Thirty-six of 40 individuals had epilepsy, of whom 35/35 aged >5 years. Almost all (35/36) presented focal seizures at onset (mean age at onset 3.4 ±â€¯2.3 SD) that persisted, reduced in frequency, in 7/22 individuals after the age of 13. Absences occurred in 22/36 (mean age at onset 7.2 ±â€¯0.9 SD); no one had absences before 6 and over 16 years old. Paroxysmal interictal abnormalities in sleep also followed an age-dependent evolution with a significant increase in frequency at school age (p = 0.002) and a reduction during adolescence (p = 0.008). Electrical Status Epilepticus during Sleep occurred in 14/36 (13/14 aged 5-13 years old at onset). Seven focal seizure ictal video-EEGs were collected: all were long-lasting and more visible clinical signs were often preceded by prolonged electrical and/or subtle (erratic head and eye orientation) seizures. Valproic acid was confirmed as the most widely used and effective drug, followed by levetiracetam. CONCLUSIONS: Epilepsy is a major sign of MWS with a characteristic, age-dependent, electroclinical pattern. Improvement with adolescence/adulthood is usually observed. Our data strengthen the hypothesis of a GABAergic transmission imbalance underlying ZEB2-related epilepsy.

16.
Neurol Sci ; 42(7): 2637-2644, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33929645

ABSTRACT

BACKGROUND: Lombardy was severely hit by the COVID-19 pandemic since February 2020 and the Health System underwent rapid reorganization. Outpatient clinics were stopped for non-urgent patients: it became a priority to manage hundreds of fragile neurological patients who suddenly had less reference points. In Italy, before the pandemic, Televisits were neither recognized nor priced. METHODS: At the Fondazione IRCCS Istituto Neurologico C. Besta, we reorganized outpatient clinics to deliver Neuro-telemedicine services, including Televisits and Teleneurorehabilitation, since March 2020. A dedicated Working Group prepared the procedure, tested the system, and designed satisfaction questionnaires for adults and children. RESULTS: After a pilot phase, we prepared a procedure for Telemedicine outpatient clinics which was approved by hospital directions. It included prescription, booking, consenting, privacy and data protection, secure connection with patients (Teams Microsoft 365), electronic report preparation and delivery, reporting, and accountability of the services. During the March-September 2020 period, we delivered 3167 Telemedicine services, including 1618 Televisits, to 1694 patients (972 adults, 722 children) with a wide range of chronic neurological disorders. We successfully administered different clinical assessment and scales. Satisfaction among patients and caregivers was very high. CONCLUSIONS: During the dramatic emergency, we were able to take care of more than 1600 patients by organizing Neuro-telehealth in a few weeks, lessening the impact of the pandemic on fragile patients with chronic neurological disorders; this strategy is now stably embedded in our care pathways. In Italy, Telehealth is at present recognized and priced and is becoming a stable pillar of the health system.


Subject(s)
COVID-19 , Telemedicine , Adult , Child , Humans , Italy/epidemiology , Pandemics , Referral and Consultation , SARS-CoV-2
17.
Neuropediatrics ; 52(6): 484-488, 2021 12.
Article in English | MEDLINE | ID: mdl-33853164

ABSTRACT

KIRREL3 is a gene important for the central nervous system development-in particular for the process of neuronal migration, axonal fasciculation, and synaptogenesis-and colocalizes and cooperates in neurons with CASK gene. Alterations of KIRREL3 have been linked to neurodevelopmental disorders, ranging from developmental delay, to autism spectrum disorder, to attention deficit/hyperactivity disorder. The underlying mechanism is not yet fully understood, as it has been hypothesized a fully dominant effect, a risk factor role of KIRREL3 partially penetrating variants, and a recessive inheritance pattern. We report a novel and de novo KIRREL3 mutation in a child affected by severe neurodevelopmental disorder and with brain magnetic resonance imaging evidence of mega cisterna magna and mild cerebellar hypoplasia. This case strengthens the hypothesis that dominant KIRREL3 variants may lead to neurodevelopmental disruption; furthermore, given the strong interaction between KIRREL3 and CASK, we discuss as posterior fossa anomalies may also be part of the phenotype of KIRREL3-related syndrome.


Subject(s)
Autism Spectrum Disorder , Nervous System Malformations , Neurodevelopmental Disorders , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Cerebellum/abnormalities , Child , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/genetics , Humans , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/genetics , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/genetics
18.
Seizure ; 88: 60-72, 2021 May.
Article in English | MEDLINE | ID: mdl-33831796

ABSTRACT

PURPOSE: Epilepsy is a main manifestation in the autosomal dominant mental retardation syndrome caused by heterozygous variants in MEF2C. We aimed to delineate the electro-clinical features and refine the genotype-phenotype correlations in patients with MEF2C haploinsufficiency. METHODS: We thoroughly investigated 25 patients with genetically confirmed MEF2C-syndrome across 12 different European Genetics and Epilepsy Centers, focusing on the epileptic phenotype. Clinical features (seizure types, onset, evolution, and response to therapy), EEG recordings during waking/sleep, and neuroimaging findings were analyzed. We also performed a detailed literature review using the terms "MEF2C", "seizures", and "epilepsy". RESULTS: Epilepsy was diagnosed in 19 out of 25 (~80%) subjects, with age at onset <30 months. Ten individuals (40%) presented with febrile seizures and myoclonic seizures occurred in ~50% of patients. Epileptiform abnormalities were observed in 20/25 patients (80%) and hypoplasia/partial agenesis of the corpus callosum was detected in 12/25 patients (~50%). Nine patients harbored a 5q14.3 deletion encompassing MEF2C and at least one other gene. In 7 out of 10 patients with myoclonic seizures, MIR9-2 and LINC00461 were also deleted, whereas ADGRV1 was involved in 3/4 patients with spasms. CONCLUSION: The epileptic phenotype of MEF2C-syndrome is variable. Febrile and myoclonic seizures are the most frequent, usually associated with a slowing of the background activity and irregular diffuse discharges of frontally dominant, symmetric or asymmetric, slow theta waves with interposed spike-and-waves complexes. The haploinsufficiency of ADGRV1, MIR9-2, and LINC00461 likely contributes to myoclonic seizures and spasms in patients with MEF2C syndrome.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , Intellectual Disability , MEF2 Transcription Factors , Electroencephalography , Epilepsy/genetics , Haploinsufficiency , Humans , Intellectual Disability/genetics , MEF2 Transcription Factors/genetics , Seizures
19.
Eur J Med Genet ; 64(1): 104116, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33307281

ABSTRACT

Biallelic loss of function of TELO2 gene cause a severe syndromic disease mainly characterized by global developmental delay with poor motor and language acquisitions, microcephaly, short stature, minor facial and limbs anomalies, sleep disorder, spasticity, and balance impairment up to ataxia. TELO2-related syndrome, also known as You-Hoover-Fong Syndrome, is extremely rare and since its first description in 2016 only 8 individuals have been reported, all showing a severe disability. The causative gene is member of the big molecular family of genes responsible for cells proliferation and DNA stability. We describe the case of two sisters, carrying the homozygous p. Arg609His variant of the gene, who present a milder phenotype of TELO2-related syndrome. Such variant has been reported once in a more severely affected patient, in compound heterozygous state associated with the p. Pro260Leu variant, suggesting a possible role of the p. Arg609His variant in determining milder phenotypes. Comparing the siblings with all previously reported cases, we offer an overview on the condition and discuss TELO2 genetic interactions, in order to further explore the molecular bases of this recently described disorder.


Subject(s)
Abnormalities, Multiple/genetics , Ataxia/genetics , Developmental Disabilities/genetics , Mutation, Missense , Phenotype , Abnormalities, Multiple/pathology , Adolescent , Ataxia/pathology , Developmental Disabilities/pathology , Female , Homozygote , Humans , Pedigree , Syndrome , Young Adult
20.
Am J Med Genet A ; 182(12): 2877-2886, 2020 12.
Article in English | MEDLINE | ID: mdl-33043602

ABSTRACT

Wiedemann-Steiner syndrome (WDSTS) is a rare autosomal dominant condition caused by heterozygous loss of function variants in the KMT2A (MLL) gene, encoding a lysine N-methyltransferase that mediates a histone methylation pattern specific for epigenetic transcriptional activation. WDSTS is characterized by a distinctive facial phenotype, hypertrichosis, short stature, developmental delay, intellectual disability, congenital malformations, and skeletal anomalies. Recently, a few patients have been reported having abnormal skeletal development of the cervical spine. Here we describe 11 such individuals, all with KMT2A de novo loss-of-function variants: 10 showed craniovertebral junction anomalies, while an 11th patient had a cervical abnormality in C7. By evaluating clinical and diagnostic imaging data we characterized these anomalies, which consist primarily of fused cervical vertebrae, C1 and C2 abnormalities, small foramen magnum and Chiari malformation type I. Craniovertebral anomalies in WDSTS patients have been largely disregarded so far, but the increasing number of reports suggests that they may be an intrinsic feature of this syndrome. Specific investigation strategies should be considered for early identification and prevention of craniovertebral junction complications in WDSTS patients.


Subject(s)
Abnormalities, Multiple/pathology , Cervical Vertebrae/pathology , Contracture/pathology , Growth Disorders/pathology , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/pathology , Microcephaly/pathology , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Cervical Vertebrae/metabolism , Child , Child, Preschool , Contracture/genetics , Facies , Female , Growth Disorders/genetics , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Phenotype , Syndrome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL