Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
2.
Nat Commun ; 14(1): 1390, 2023 03 13.
Article En | MEDLINE | ID: mdl-36914658

Recently developed inhibitors of polymerase theta (POLθ) have demonstrated synthetic lethality in BRCA-deficient tumor models. To examine the contribution of the immune microenvironment to antitumor efficacy, we characterized the effects of POLθ inhibition in immunocompetent models of BRCA1-deficient triple-negative breast cancer (TNBC) or BRCA2-deficient pancreatic ductal adenocarcinoma (PDAC). We demonstrate that genetic POLQ depletion or pharmacological POLθ inhibition induces both innate and adaptive immune responses in these models. POLθ inhibition resulted in increased micronuclei, cGAS/STING pathway activation, type I interferon gene expression, CD8+ T cell infiltration and activation, local paracrine activation of dendritic cells and upregulation of PD-L1 expression. Depletion of CD8+ T cells compromised the efficacy of POLθ inhibition, whereas antitumor effects were augmented in combination with anti-PD-1 immunotherapy. Collectively, our findings demonstrate that POLθ inhibition induces immune responses in a cGAS/STING-dependent manner and provide a rationale for combining POLθ inhibition with immune checkpoint blockade for the treatment of HR-deficient cancers.


Carcinoma, Pancreatic Ductal , DNA-Directed DNA Polymerase , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/metabolism , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors/therapeutic use , Pancreatic Neoplasms/metabolism , Tumor Microenvironment , DNA-Directed DNA Polymerase/metabolism , DNA Polymerase theta
3.
Bioorg Med Chem ; 78: 117130, 2023 01 15.
Article En | MEDLINE | ID: mdl-36542958

PPAR gamma (PPARG) is a ligand activated transcription factor that regulates genes involved in inflammation, bone biology, lipid homeostasis, as well as a master regulator of adipogenesis and a potential lineage driver of luminal bladder cancer. While PPARG agonists lead to transcriptional activation of canonical target genes, inverse agonists have the opposite effect through inducing a transcriptionally repressive complex leading to repression of canonical target gene expression. While many agonists have been described and tested clinically, inverse agonists offer an underexplored avenue to modulate PPARG biology in vivo. Current inverse agonists lack favorable in vivo properties; herein we describe the discovery and characterization of a series of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists, BAY-5516, BAY-5094, and BAY-9683. Structural studies of this series revealed distinct pre- and post-covalent binding positions, which led to the hypothesis that interactions in the pre-covalent conformation are primarily responsible for driving affinity, while interactions in the post-covalent conformation are more responsible for cellular functional effects by enhancing PPARG interactions with its corepressors. The need to simultaneously optimize for two distinct states may partially explain the steep SAR observed. Exquisite selectivity was achieved over related nuclear receptors in the subfamily due in part to a covalent warhead with low reactivity through an SNAr mechanism in addition to the specificity gained through covalent binding to a reactive cysteine uniquely positioned within the PPARG LBD. BAY-5516, BAY-5094, and BAY-9683 lead to pharmacodynamic regulation of PPARG target gene expression in vivo comparable to known inverse agonist SR10221 and represent new tools for future in vivo studies to explore their potential utility for treatment of disorders of hyperactivated PPARG including luminal bladder cancer and other disorders.


PPAR gamma , Urinary Bladder Neoplasms , Humans , PPAR gamma/agonists , Drug Inverse Agonism , PPAR-gamma Agonists , Gene Expression Regulation
4.
NPJ Breast Cancer ; 8(1): 102, 2022 Sep 06.
Article En | MEDLINE | ID: mdl-36068244

Poly (ADP-ribose) polymerase (PARP) inhibitors exert their efficacy via synthetic lethal effects and by inducing cGAS/STING-mediated immune responses. We demonstrate that compared to monotherapies, combined PARP inhibition and STING agonism results in increased STING pathway activation, greater cytotoxic T-cell recruitment and enhanced dendritic cell activation in BRCA1-deficient breast cancer models. The combination markedly improved anti-tumor efficacy in vivo, with evidence of complete tumor clearance, prolongation of survival and induction of immunologic memory.

5.
Nat Cancer ; 2(6): 598-610, 2021 06.
Article En | MEDLINE | ID: mdl-34179826

DNA polymerase theta (POLθ) is synthetic lethal with Homologous Recombination (HR) deficiency and thus a candidate target for HR-deficient cancers. Through high-throughput small molecule screens we identified the antibiotic Novobiocin (NVB) as a specific POLθ inhibitor that selectively kills HR-deficient tumor cells in vitro and in vivo. NVB directly binds to the POLθ ATPase domain, inhibits its ATPase activity, and phenocopies POLθ depletion. NVB kills HR-deficient breast and ovarian tumors in GEMM, xenograft and PDX models. Increased POLθ levels predict NVB sensitivity, and BRCA-deficient tumor cells with acquired resistance to PARP inhibitors (PARPi) are sensitive to NVB in vitro and in vivo. Mechanistically, NVB-mediated cell death in PARPi-resistant cells arises from increased double-strand break end resection, leading to accumulation of single-strand DNA intermediates and non-functional RAD51 foci. Our results demonstrate that NVB may be useful alone or in combination with PARPi in treating HR-deficient tumors, including those with acquired PARPi resistance. (151/150).


Homologous Recombination , Ovarian Neoplasms , Adenosine Triphosphatases/genetics , Female , Homologous Recombination/genetics , Humans , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
6.
Nat Cancer ; 2(4): 444-456, 2021 04.
Article En | MEDLINE | ID: mdl-33899001

Prostate cancers are considered to be immunologically 'cold' tumors given the very few patients who respond to checkpoint inhibitor (CPI) therapy. Recently, enrichment of interferon-stimulated genes (ISGs) predicted a favorable response to CPI across various disease sites. The enhancer of zeste homolog-2 (EZH2) is overexpressed in prostate cancer and known to negatively regulate ISGs. In the present study, we demonstrate that EZH2 inhibition in prostate cancer models activates a double-stranded RNA-STING-ISG stress response upregulating genes involved in antigen presentation, Th1 chemokine signaling and interferon response, including programmed cell death protein 1 (PD-L1) that is dependent on STING activation. EZH2 inhibition substantially increased intratumoral trafficking of activated CD8+ T cells and increased M1 tumor-associated macrophages, overall reversing resistance to PD-1 CPI. Our study identifies EZH2 as a potent inhibitor of antitumor immunity and responsiveness to CPI. These data suggest EZH2 inhibition as a therapeutic direction to enhance prostate cancer response to PD-1 CPI.


Programmed Cell Death 1 Receptor , Prostatic Neoplasms , CD8-Positive T-Lymphocytes , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Interferons/pharmacology , Male , Prostatic Neoplasms/drug therapy , RNA, Double-Stranded
7.
Nat Cancer ; 2(1): 66-82, 2021 01.
Article En | MEDLINE | ID: mdl-33738458

Despite objective responses to PARP inhibition and improvements in progression-free survival compared to standard chemotherapy in patients with BRCA-associated triple-negative breast cancer (TNBC), benefits are transitory. Using high dimensional single-cell profiling of human TNBC, here we demonstrate that macrophages are the predominant infiltrating immune cell type in BRCA-associated TNBC. Through multi-omics profiling we show that PARP inhibitors enhance both anti- and pro-tumor features of macrophages through glucose and lipid metabolic reprogramming driven by the sterol regulatory element-binding protein 1 (SREBP-1) pathway. Combined PARP inhibitor therapy with CSF-1R blocking antibodies significantly enhanced innate and adaptive anti-tumor immunity and extends survival in BRCA-deficient tumors in vivo and is mediated by CD8+ T-cells. Collectively, our results uncover macrophage-mediated immune suppression as a liability of PARP inhibitor treatment and demonstrate combined PARP inhibition and macrophage targeting therapy induces a durable reprogramming of the tumor microenvironment, thus constituting a promising therapeutic strategy for TNBC.


Poly(ADP-ribose) Polymerase Inhibitors , Triple Negative Breast Neoplasms , BRCA1 Protein/genetics , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Humans , Macrophages , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment
8.
Cancer Discov ; 9(6): 722-737, 2019 06.
Article En | MEDLINE | ID: mdl-31015319

Combinatorial clinical trials of PARP inhibitors with immunotherapies are ongoing, yet the immunomodulatory effects of PARP inhibition have been incompletely studied. Here, we sought to dissect the mechanisms underlying PARP inhibitor-induced changes in the tumor microenvironment of BRCA1-deficient triple-negative breast cancer (TNBC). We demonstrate that the PARP inhibitor olaparib induces CD8+ T-cell infiltration and activation in vivo, and that CD8+ T-cell depletion severely compromises antitumor efficacy. Olaparib-induced T-cell recruitment is mediated through activation of the cGAS/STING pathway in tumor cells with paracrine activation of dendritic cells and is more pronounced in HR-deficient compared with HR-proficient TNBC cells and in vivo models. CRISPR-mediated knockout of STING in cancer cells prevents proinflammatory signaling and is sufficient to abolish olaparib-induced T-cell infiltration in vivo. These findings elucidate an additional mechanism of action of PARP inhibitors and provide a rationale for combining PARP inhibition with immunotherapies for the treatment of TNBC. SIGNIFICANCE: This work demonstrates cross-talk between PARP inhibition and the tumor microenvironment related to STING/TBK1/IRF3 pathway activation in cancer cells that governs CD8+ T-cell recruitment and antitumor efficacy. The data provide insight into the mechanism of action of PARP inhibitors in BRCA-associated breast cancer.This article is highlighted in the In This Issue feature, p. 681.


CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Membrane Proteins/metabolism , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/etiology , Triple Negative Breast Neoplasms/metabolism , BRCA1 Protein/deficiency , BRCA2 Protein/deficiency , Biomarkers , CD8-Positive T-Lymphocytes/drug effects , Female , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
9.
Mol Cancer Ther ; 17(2): 575-587, 2018 02.
Article En | MEDLINE | ID: mdl-29367266

Metastatic pancreatic ductal adenocarcinomas (PDAC) are incurable due to the rapid development of resistance to all current therapeutics. Oncolytic adenoviral mutants have emerged as a promising new strategy that negates such resistance. In contrast to normal tissue, the majority of PDACs express the αvß6 integrin receptor. To exploit this feature, we modified our previously reported oncolytic adenovirus, AdΔΔ, to selectively target αvß6 integrins to facilitate systemic delivery. Structural modifications to AdΔΔ include the expression of the small but potent αvß6-binding peptide, A20FMDV2, and ablation of binding to the native coxsackie and adenovirus receptor (CAR) within the fiber knob region. The resultant mutant, Ad5-3Δ-A20T, infected and killed αvß6 integrin-expressing cells more effectively than the parental wild-type (Ad5wt) virus and AdΔΔ. Viral uptake through αvß6 integrins rather than native viral receptors (CAR, αvß3 and αvß5 integrins) promoted viral propagation and spread. Superior efficacy of Ad5-3Δ-A20T compared with Ad5wt was demonstrated in 3D organotypic cocultures, and similar potency between the two viruses was observed in Suit-2 in vivo models. Importantly, Ad5-3Δ-A20T infected pancreatic stellate cells at low levels, which may further facilitate viral spread and cancer cell elimination either as a single agent or in combination with the chemotherapy drug, gemcitabine. We demonstrate that Ad5-3Δ-A20T is highly selective for αvß6 integrin-expressing pancreatic cancer cells, and with further development, this new and exciting strategy can potentially be extended to improve the systemic delivery of adenoviruses to pancreatic cancer patients. Mol Cancer Ther; 17(2); 575-87. ©2018 AACR.


Adenoviridae/genetics , Antigens, Neoplasm/genetics , Carcinoma, Pancreatic Ductal/therapy , Integrins/genetics , Oncolytic Virotherapy/methods , Pancreatic Neoplasms/therapy , Adenoviridae/metabolism , Animals , Antigens, Neoplasm/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/virology , Cell Line, Tumor , HEK293 Cells , Humans , Integrins/metabolism , Mice , Mice, Nude , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/virology , Xenograft Model Antitumor Assays
10.
Oncotarget ; 7(13): 15703-24, 2016 Mar 29.
Article En | MEDLINE | ID: mdl-26872382

Adenovirus-mediated sensitization of cancer cells to cytotoxic drugs depends on simultaneous interactions of early viral genes with cell death and survival pathways. It is unclear what cellular factors mediate these interactions in the presence of DNA-damaging drugs. We found that adenovirus prevents Chk1-mediated checkpoint activation through inactivation of Mre11 and downregulation of the pChk1 adaptor-protein, Claspin, in cells with high levels of DNA-damage induced by the cytotoxic drugs gemcitabine and irinotecan. The mechanisms for Claspin downregulation involve decreased transcription and increased degradation, further attenuating pChk1-mediated signalling. Live cell imaging demonstrated that low doses of gemcitabine caused multiple mitotic aberrations including multipolar spindles, micro- and multi-nucleation and cytokinesis failure. A mutant virus with the anti-apoptotic E1B19K-gene deleted (AdΔ19K) further enhanced cell killing, Claspin downregulation, and potentiated drug-induced DNA damage and mitotic aberrations. Decreased Claspin expression and inactivation of Mre11 contributed to the enhanced cell killing in combination with DNA-damaging drugs. These results reveal novel mechanisms that are utilised by adenovirus to ensure completion of its life cycle in the presence of cellular DNA damage. Taken together, our findings reveal novel cellular targets that may be exploited when developing improved anti-cancer therapeutics.


Adenocarcinoma , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Pancreatic Neoplasms , Adaptor Proteins, Signal Transducing/biosynthesis , Adenoviridae/genetics , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Line, Tumor , DNA Damage/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Down-Regulation , Genes, Viral , Humans , Irinotecan , MRE11 Homologue Protein/biosynthesis , Gemcitabine
11.
Mol Endocrinol ; 25(1): 58-71, 2011 Jan.
Article En | MEDLINE | ID: mdl-21147850

The activity of the glucocorticoid receptor (GR) is modulated by posttranslational modifications, protein stability, and cofactor recruitment. In this report, we investigated the role of the stress-responsive activator of p300/tetratricopeptide repeat domain 5 (TTC5), in the regulation of the GR. TTC5 is a member of the TTC family of proteins and has previously been shown to participate in the cellular response to DNA damage and heat shock. Here, we demonstrate that TTC5 is an important cofactor for the nuclear hormone receptors GR and estrogen receptor. GR and TTC5 interact through multiple tetratricopeptide repeat and LXXLL motifs. TTC5 stabilizes GR and increases its half-life, through a proteasome-dependent process and by inhibiting the actions of the ubiquitin ligase murine double minute 2. Cellular stress, including DNA damage, proteasome inhibition, and heat shock, modulates the interaction pattern of GR/TTC5, thereby altering GR stability and transcriptional activity. Furthermore, GR transcriptional activity is regulated by TTC5 in both a positive and negative fashion under DNA damage conditions in a target gene-specific way. In this report we provide evidence supporting the notion that TTC5 is a novel cofactor regulating GR function in a stress-dependent manner.


Gene Expression Regulation , Receptors, Glucocorticoid/genetics , Stress, Physiological/genetics , Transcription Factors/metabolism , Animals , Cell Line , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Gene Silencing/drug effects , Half-Life , Humans , Models, Biological , Promoter Regions, Genetic/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Protein Interaction Mapping , Protein Stability/drug effects , Protein Structure, Tertiary , Proto-Oncogene Proteins c-mdm2/metabolism , Receptors, Glucocorticoid/metabolism , Stress, Physiological/drug effects , Transcription Factors/chemistry , Transcription, Genetic/drug effects
12.
Steroids ; 75(6): 457-65, 2010 Jun.
Article En | MEDLINE | ID: mdl-20223255

The glucocorticoid receptor (GR) signal transduction and transcriptional regulation are efficiently recapitulated when GR is expressed in Saccharomyces cerevisiae. In this report we demonstrate that the in vivo GR phosphorylation pattern, hormone dependency and interdependency of phosphorylation events were similar in yeast and mammalian cells. GR phosphorylation at S246 exhibited inhibitory effect on S224 and S232 phosphorylation, suggesting the conservation of molecular mechanisms that control this interdependence between yeast and mammalian cells. To assess the effects of GR phosphorylation the mutated GR derivatives T171A, S224A, S232A, S246A were overexpressed and their transcriptional activity was analysed. These receptor derivatives displayed significant hormone inducible transcription when overexpressed in S. cerevisiae. We have established an inducible methionine expression system, which allows the close regulation of the receptor protein levels to analyse the dependence of GR function on its phosphorylation and protein abundance. Using this system we observed that GR S246A mutation increased its activity across all of the GR concentrations tested. The activity of the S224A and S246A mutants was mostly independent of GR protein levels, whereas the WT, T171A and S232A mediated transcription diminished with declining GR protein levels. Our results suggest that GR phosphorylation at specific residues affects its transcriptional functions in a site selective manner and these effects were directly linked to GR dosage.


Receptors, Glucocorticoid/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Animals , Humans , Molecular Sequence Data , Mutant Proteins/metabolism , Mutation , Peptide Mapping , Phosphopeptides/genetics , Phosphopeptides/metabolism , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction/physiology
...