Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6751, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875529

ABSTRACT

Biomolecular polyelectrolyte complexes can be formed between oppositely charged intrinsically disordered regions (IDRs) of proteins or between IDRs and nucleic acids. Highly charged IDRs are abundant in the nucleus, yet few have been functionally characterized. Here, we show that a positively charged IDR within the human ATP-dependent DNA helicase Q4 (RECQ4) forms coacervates with G-quadruplexes (G4s). We describe a three-step model of charge-driven coacervation by integrating equilibrium and kinetic binding data in a global numerical model. The oppositely charged IDR and G4 molecules form a complex in the solution that follows a rapid nucleation-growth mechanism leading to a dynamic equilibrium between dilute and condensed phases. We also discover a physical interaction with Replication Protein A (RPA) and demonstrate that the IDR can switch between the two extremes of the structural continuum of complexes. The structural, kinetic, and thermodynamic profile of its interactions revealed a dynamic disordered complex with nucleic acids and a static ordered complex with RPA protein. The two mutually exclusive binding modes suggest a regulatory role for the IDR in RECQ4 function by enabling molecular handoffs. Our study extends the functional repertoire of IDRs and demonstrates a role of polyelectrolyte complexes involved in G4 binding.


Subject(s)
G-Quadruplexes , Intrinsically Disordered Proteins , RecQ Helicases , Humans , Intrinsically Disordered Proteins/metabolism , Nucleic Acids , Polyelectrolytes , RecQ Helicases/metabolism
2.
Nat Commun ; 12(1): 3050, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031427

ABSTRACT

Clathrin-mediated endocytosis (CME) is the gatekeeper of the plasma membrane. In contrast to animals and yeasts, CME in plants depends on the TPLATE complex (TPC), an evolutionary ancient adaptor complex. However, the mechanistic contribution of the individual TPC subunits to plant CME remains elusive. In this study, we used a multidisciplinary approach to elucidate the structural and functional roles of the evolutionary conserved N-terminal Eps15 homology (EH) domains of the TPC subunit AtEH1/Pan1. By integrating high-resolution structural information obtained by X-ray crystallography and NMR spectroscopy with all-atom molecular dynamics simulations, we provide structural insight into the function of both EH domains. Both domains bind phosphatidic acid with a different strength, and only the second domain binds phosphatidylinositol 4,5-bisphosphate. Unbiased peptidome profiling by mass-spectrometry revealed that the first EH domain preferentially interacts with the double N-terminal NPF motif of a previously unidentified TPC interactor, the integral membrane protein Secretory Carrier Membrane Protein 5 (SCAMP5). Furthermore, we show that AtEH/Pan1 proteins control the internalization of SCAMP5 via this double NPF peptide interaction motif. Collectively, our structural and functional studies reveal distinct but complementary roles of the EH domains of AtEH/Pan1 in plant CME and connect the internalization of SCAMP5 to the TPLATE complex.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Calcium-Binding Proteins/chemistry , Endocytosis , Plant Proteins/chemistry , Protein Binding , Adaptor Proteins, Signal Transducing/genetics , Arabidopsis Proteins , Calcium-Binding Proteins/genetics , Cell Membrane/metabolism , Crystallography, X-Ray , Membrane Proteins/chemistry , Molecular Dynamics Simulation , Plant Proteins/genetics , Plants, Genetically Modified , Protein Domains , Protein Transport , Sequence Alignment , Nicotiana/genetics
3.
Angew Chem Int Ed Engl ; 57(2): 486-490, 2018 01 08.
Article in English | MEDLINE | ID: mdl-28980372

ABSTRACT

Tudor domains bind to dimethylarginine (DMA) residues, which are post-translational modifications that play a central role in gene regulation in eukaryotic cells. NMR spectroscopy and quantum calculations are combined to demonstrate that DMA recognition by Tudor domains involves conformational selection. The binding mechanism is confirmed by a mutation in the aromatic cage that perturbs the native recognition mode of the ligand. General mechanistic principles are delineated from the combined results, indicating that Tudor domains utilize cation-π interactions to achieve ligand recognition.


Subject(s)
Arginine/analogs & derivatives , Motor Neurons/metabolism , Tudor Domain , Arginine/chemistry , Arginine/metabolism , Protein Conformation , Protein Processing, Post-Translational , Quantum Theory , Thermodynamics
4.
Extremophiles ; 20(5): 695-709, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27342116

ABSTRACT

The histone-like DNA-binding proteins (HU) serve as model molecules for protein thermostability studies, as they function in different bacteria that grow in a wide range of temperatures and show sequence diversity under a common fold. In this work, we report the cloning of the hutth gene from Thermus thermophilus, the purification and crystallization of the recombinant HUTth protein, as well as its X-ray structure determination at 1.7 Å. Detailed structural and thermodynamic analyses were performed towards the understanding of the thermostability mechanism. The interaction of HUTth protein with plasmid DNA in solution has been determined for the first time with MST. Sequence conservation of an exclusively thermophilic order like Thermales, when compared to a predominantly mesophilic order (Deinococcales), should be subject, to some extent, to thermostability-related evolutionary pressure. This hypothesis was used to guide our bioinformatics and evolutionary studies. We discuss the impact of thermostability adaptation on the structure of HU proteins, based on the detailed evolutionary analysis of the Deinococcus-Thermus phylum, where HUTth belongs. Furthermore, we propose a novel method of engineering thermostable proteins, by combining consensus-based design with ancestral sequence reconstruction. Finally, through the structure of HUTth, we are able to examine the validity of these predictions. Our approach represents a significant advancement, as it explores for the first time the potential of ancestral sequence reconstruction in the divergence between a thermophilic and a mainly mesophilic taxon, combined with consensus-based engineering.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Evolution, Molecular , Hot Temperature , Thermus thermophilus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Conserved Sequence , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Protein Binding , Protein Stability , Thermus thermophilus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...