Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 481
1.
Kidney Med ; 6(6): 100834, 2024 Jun.
Article En | MEDLINE | ID: mdl-38826568

Rationale & Objective: Tubulointerstitial damage is a feature of early chronic kidney disease (CKD), but current clinical tests capture it poorly. Urine biomarkers of tubulointerstitial health may identify risk of CKD. Study Design: Prospective cohort (Atherosclerosis Risk in Communities [ARIC]) and case-cohort (Multi-Ethnic Study of Atherosclerosis [MESA] and Reasons for Geographic and Racial Differences in Stroke [REGARDS]). Setting & Participants: Adults with estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2 and without diabetes in the ARIC, REGARDS, and MESA studies. Exposures: Baseline urine monocyte chemoattractant protein-1 (MCP-1), alpha-1-microglobulin (α1m), kidney injury molecule-1, epidermal growth factor, and chitinase-3-like protein 1. Outcome: Incident CKD or end-stage kidney disease. Analytical Approach: Multivariable Cox proportional hazards regression for each cohort; meta-analysis of results from all 3 cohorts. Results: 872 ARIC participants (444 cases of incident CKD), 636 MESA participants (158 cases), and 924 REGARDS participants (488 cases) were sampled. Across cohorts, mean age ranged from 60 ± 10 to 63 ± 8 years, and baseline eGFR ranged from 88 ± 13 to 91 ± 14 mL/min/1.73 m2. In ARIC, higher concentrations of urine MCP-1, α1m, and kidney injury molecule-1 were associated with incident CKD. In MESA, higher concentration of urine MCP-1 and lower concentration of epidermal growth factor were each associated with incident CKD. In REGARDS, none of the biomarkers were associated with incident CKD. In meta-analysis of all 3 cohorts, each 2-fold increase α1m concentration was associated with incident CKD (HR, 1.19; 95% CI, 1.08-1.31). Limitations: Observational design susceptible to confounding; competing risks during long follow-up period; meta-analysis limited to 3 cohorts. Conclusions: In 3 combined cohorts of adults without prevalent CKD or diabetes, higher urine α1m concentration was independently associated with incident CKD. 4 biomarkers were associated with incident CKD in at least 1 of the cohorts when analyzed individually. Kidney tubule health markers might inform CKD risk independent of eGFR and albuminuria.


This study analyzed 3 cohorts (ARIC, MESA, and REGARDS) of adults without diabetes or prevalent chronic kidney disease (CKD) to determine the associations of 5 urinary biomarkers of kidney tubulointerstitial health with incident CKD, independent of traditional measures of kidney health. Meta-analysis of results from all 3 cohorts suggested that higher baseline levels of urine alpha-1-microglobulin were associated with incident CKD at follow-up. Results from individual cohorts suggested that in addition to alpha-1-microglobulin, monocyte chemoattractant protein-1, kidney injury molecule-1, and epidermal growth factor may also be associated with the development of CKD. These findings underscore the importance of kidney tubule interstitial health in defining risk of CKD independent of creatinine and urine albumin.

4.
Article En | MEDLINE | ID: mdl-38728094

BACKGROUND: Cognitive dysfunction is a well-known complication of chronic kidney disease, but it is less known whether cognitive decline occurs in survivors after acute kidney injury (AKI). We hypothesized that an episode of AKI is associated with poorer cognitive function, mediated, at least in part, by persistent systemic inflammation. METHODS: ASSESS-AKI enrolled patients surviving three months after hospitalization with and without AKI matched based on demographics, comorbidities, and baseline kidney function. A subset underwent cognitive testing using the modified mini-mental status examination (3MS) at 3, 12, and 36 months. We examined the association of AKI with 3MS scores using mixed linear models and assessed the proportion of risk mediated by systemic inflammatory biomarkers. RESULTS: Among 1538 participants in ASSESS-AKI, 1420 (92%) completed the 3MS assessment at 3 months and had a corresponding matched participant. Participants with AKI had lower 3MS scores at three years (difference -1.1 (95% CI: -2.0, -0.3) P=0.009) compared to participants without AKI. A higher proportion of AKI participants had a clinically meaningful (≥ 5 point) reduction in 3MS scores at three years compared to participants without AKI (14% vs. 10%, P=0.04). In mediation analyses, plasma soluble tumor necrosis factor receptor-1 (sTNFR-1) at three months after AKI mediated 35% (P=0.02) of the AKI related risk for 3MS scores at three years. CONCLUSIONS: AKI was associated with lower 3MS scores and sTNFR-1 concentrations appeared to mediate a significant proportion of the risk of long-term cognitive impairment. Further work is needed to determine if AKI is causal or a marker for cognitive impairment.

5.
J Intern Med ; 296(1): 24-38, 2024 Jul.
Article En | MEDLINE | ID: mdl-38738988

Steatotic liver disease (SLD) is a worldwide public health problem, causing considerable morbidity and mortality. Patients with SLD are at increased risk for major adverse cardiovascular (CV) events, type 2 diabetes mellitus and chronic kidney disease. Conversely, patients with cardiometabolic conditions have a high prevalence of SLD. In addition to epidemiological evidence linking many of these conditions, there is evidence of shared pathophysiological processes. In December 2022, a unique multi-stakeholder, multi-specialty meeting, called MOSAIC (Metabolic multi Organ Science Accelerating Innovation in Clinical Trials) was convened to foster collaboration across metabolic, hepatology, nephrology and CV disorders. One of the goals of the meeting was to consider approaches to drug development that would speed regulatory approval of treatments for multiple disorders by combining liver and cardiorenal endpoints within a single study. Non-invasive tests, including biomarkers and imaging, are needed in hepatic and cardiorenal trials. They can be used as trial endpoints, to enrich trial populations, to diagnose and risk stratify patients and to assess treatment efficacy and safety. Although they are used in proof of concept and phase 2 trials, they are often not acceptable for regulatory approval of therapies. The challenge is defining the optimal combination of biomarkers, imaging and morbidity/mortality outcomes and ensuring that they are included in future trials while minimizing the burden on patients, trialists and trial sponsors. This paper provides an overview of some of the wide array of CV, liver and kidney measurements that were discussed at the MOSAIC meeting.


Clinical Trials as Topic , Humans , Cardiovascular Diseases , Fatty Liver/therapy , Biomarkers , Renal Insufficiency, Chronic/therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy
6.
JAMA ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38780515

Importance: Recipient outcomes after kidney transplant from deceased donors who received dialysis prior to kidney donation are not well described. Objective: To compare outcomes of transplant recipients who received kidneys from deceased donors who underwent dialysis prior to kidney donation vs recipients of kidneys from deceased donors who did not undergo dialysis. Design, Setting, and Participants: A retrospective cohort study was conducted including data from 58 US organ procurement organizations on deceased kidney donors and kidney transplant recipients. From 2010 to 2018, 805 donors who underwent dialysis prior to kidney donation were identified. The donors who underwent dialysis prior to kidney donation were matched 1:1 with donors who did not undergo dialysis using a rank-based distance matrix algorithm; 1944 kidney transplant recipients were evaluated. Exposure: Kidney transplants from deceased donors who underwent dialysis prior to kidney donation compared with kidney transplants from deceased donors who did not undergo dialysis. Main Outcomes and Measures: The 4 study outcomes were delayed graft function (defined as receipt of dialysis by the kidney recipient ≤1 week after transplant), all-cause graft failure, death-censored graft failure, and death. Results: From 2010 to 2018, 1.4% of deceased kidney donors (805 of 58 155) underwent dialysis prior to kidney donation. Of these 805 individuals, 523 (65%) donated at least 1 kidney. A total of 969 kidneys (60%) were transplanted and 641 kidneys (40%) were discarded. Among the donors with kidneys transplanted, 514 (mean age, 33 years [SD, 10.8 years]; 98 had hypertension [19.1%] and 36 had diabetes [7%]) underwent dialysis prior to donation and were matched with 514 (mean age, 33 years [SD, 10.9 years]; 98 had hypertension [19.1%] and 36 had diabetes [7%]) who did not undergo dialysis. Kidney transplants from donors who received dialysis prior to donation (n = 954 kidney recipients) were associated with a higher risk of delayed graft function compared with kidney transplants from donors who did not receive dialysis (n = 990 kidney recipients) (59.2% vs 24.6%, respectively; adjusted odds ratio, 4.17 [95% CI, 3.28-5.29]). The incidence rates did not significantly differ at a median follow-up of 34.1 months for all-cause graft failure (43.1 kidney transplants per 1000 person-years from donors who received dialysis prior to donation vs 46.9 kidney transplants per 1000 person-years from donors who did not receive dialysis; adjusted hazard ratio [HR], 0.90 [95% CI, 0.70-1.15]), for death-censored graft failure (22.5 vs 20.6 per 1000 person-years, respectively; adjusted HR, 1.18 [95% CI, 0.83-1.69]), or for death (24.6 vs 30.8 per 1000 person-years; adjusted HR, 0.76 [95% CI, 0.55-1.04]). Conclusions and Relevance: Compared with receiving a kidney from a deceased donor who did not undergo dialysis, receiving a kidney from a deceased donor who underwent dialysis prior to kidney donation was associated with a significantly higher incidence of delayed graft function, but no significant difference in graft failure or death at follow-up.

7.
Sci Rep ; 14(1): 8516, 2024 04 12.
Article En | MEDLINE | ID: mdl-38609491

Serum creatinine levels are insensitive to real-time changes in kidney function or injury. There is a growing interest in assessing kidney injury by measuring biomarkers in body fluid. From our previous studies, we identified and reported three urinary biomarkers namely Uromodulin (UMOD), Osteopontin (OPN), and Interleukin-9 (IL-9) to be associated with kidney health. The availability of a rapid point-of-care test for these urinary biomarkers will potentially accelerate its applicability and accessibility. In this study, we aimed to develop novel lateral flow device (LFD) for UMOD, OPN and IL-9. We tested paired antibodies using Enzyme Linked Immunosorbent Assay wherein we observed functionality only for UMOD and OPN and not for IL-9. A conjugation buffer pH of 7.8 and 8.5 was found suitable at a detection antibody concentration of 15 µg/mL for LFD development. The developed LFDs were found to quantitatively measure UMOD standard (LLOD of 80,000 pg/mL) and OPN standard (LLOD of 8600 pg/mL) respectively. The LFD was also able to measure human urinary UMOD and OPN with a percent CV of 12.12 and 5.23 respectively.


Interleukin-9 , Urinary Tract , Humans , Kidney , Antibodies , Biomarkers , Uromodulin
11.
Hum Genet ; 143(2): 151-157, 2024 Feb.
Article En | MEDLINE | ID: mdl-38349571

Experimental models suggest an important role for mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD) and acute kidney injury (AKI), but little is known regarding the impact of common mitochondrial genetic variation on kidney health. We sought to evaluate associations of inherited mitochondrial DNA (mtDNA) variation with risk of CKD and AKI in a large population-based cohort. We categorized UK Biobank participants who self-identified as white into eight distinct mtDNA haplotypes, which were previously identified based on their associations with phenotypes associated with mitochondrial DNA copy number, a measure of mitochondrial function. We used linear and logistic regression models to evaluate associations of these mtDNA haplotypes with estimated glomerular filtration rate by serum creatinine and cystatin C (eGFRCr-CysC, N = 362,802), prevalent (N = 416 cases) and incident (N = 405 cases) end-stage kidney disease (ESKD), AKI defined by diagnostic codes (N = 14,170 cases), and urine albumin/creatinine ratio (ACR, N = 114,662). The mean age was 57 ± 8 years and the mean eGFR was 90 ± 14 ml/min/1.73 m2. MtDNA haplotype was significantly associated with eGFR (p = 2.8E-12), but not with prevalent ESKD (p = 5.9E-2), incident ESKD (p = 0.93), AKI (p = 0.26), or urine ACR (p = 0.54). The association of mtDNA haplotype with eGFR remained significant after adjustment for diabetes mellitus and hypertension (p = 1.2E-10). When compared to the reference haplotype, mtDNA haplotypes I (ß = 0.402, standard error (SE) = 0.111; p = 2.7E-4), IV (ß = 0.430, SE = 0.073; p = 4.2E-9), and V (ß = 0.233, SE = 0.050; p = 2.7E-6) were each associated with higher eGFR. Among self-identified white UK Biobank participants, mtDNA haplotype was associated with eGFR, but not with ESKD, AKI or albuminuria.


Acute Kidney Injury , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Middle Aged , Aged , Biological Specimen Banks , UK Biobank , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics , Acute Kidney Injury/epidemiology , Acute Kidney Injury/genetics , Acute Kidney Injury/diagnosis , Glomerular Filtration Rate/genetics , Mitochondria/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Creatinine
12.
Kidney Int ; 105(2): 391, 2024 Feb.
Article En | MEDLINE | ID: mdl-38245219
13.
Am J Kidney Dis ; 83(2): 151-161, 2024 Feb.
Article En | MEDLINE | ID: mdl-37726051

RATIONALE & OBJECTIVE: Urinary biomarkers of injury, inflammation, and repair may help phenotype acute kidney injury (AKI) observed in clinical trials. We evaluated the differences in biomarkers between participants randomized to monotherapy or to combination renin-angiotensin-aldosterone system (RAAS) blockade in VA NEPHRON-D, where an increased proportion of observed AKI was acknowledged in the combination arm. STUDY DESIGN: Longitudinal analysis. SETTING & PARTICIPANTS: A substudy of the VA NEPHRON-D trial. PREDICTOR: Primary exposure was the treatment arm (combination [RAAS inhibitor] vs monotherapy). AKI is used as a stratifying variable. OUTCOME: Urinary biomarkers, including albumin, EGF (epidermal growth factor), MCP-1 (monocyte chemoattractant protein-1), YKL-40 (chitinase 3-like protein 1), and KIM-1 (kidney injury molecule-1). ANALYTICAL APPROACH: Biomarkers measured at baseline and at 12 months in trial participants were compared between treatment groups and by AKI. AKI events occurring during hospitalization were predefined safety end points in the original trial. The results were included in a meta-analysis with other large chronic kidney disease trials to assess global trends in biomarker changes. RESULTS: In 707 participants followed for a median of 2.2 years, AKI incidence was higher in the combination (20.7%) versus the monotherapy group (12.7%; relative risk [RR], 1.64 [95% CI, 1.16-2.30]). Compared with the monotherapy arm, in the combination arm the urine biomarkers at 12 months were either unchanged (MCP-1: RR, -3% [95% CI, -13% to 9%], Padj=0.8; KIM-1: RR, -10% [95% CI, -20% to 1%], Padj=0.2; EGF, RR-7% [95% CI, -12% to-1%], Padj=0.08) or lower (albuminuria: RR, -24% [95% CI, -37% to-8%], Padj=0.02; YKL: RR, -40% to-44% [95% CI, -58% to-25%], Padj<0.001). Pooled meta-analysis demonstrated reduced albuminuria in the intervention arm across 3 trials and similar trajectories in other biomarkers. LIMITATIONS: Biomarker measurement was limited to 2 time points independent of AKI events. CONCLUSIONS: Despite the increased risk of serum creatinine-defined AKI, combination RAAS inhibitor therapy was associated with unchanged or decreased urinary biomarkers at 12 months. This suggests a possible role for kidney biomarkers to further characterize kidney injury in clinical trials. PLAIN-LANGUAGE SUMMARY: The VA NEPHRON-D trial investigated inhibition of the renin-angiotensin-aldosterone system (RAAS) hormonal axis on kidney outcomes in a large population of diabetic chronic kidney disease patients. The trial was stopped early due to increased events of serum creatinine-defined acute kidney injury in the combination therapy arm. Urine biomarkers can serve as an adjunct to serum creatinine in identifying kidney injury. We found that urinary biomarkers in the combination therapy group were not associated with a pattern of harm and damage to the kidney, despite the increased number of kidney injury events in that group. This suggests that serum creatinine alone may be insufficient for defining kidney injury and supports further exploration of how other biomarkers might improve identification of kidney injury in clinical trials.


Acute Kidney Injury , Biomarkers , Humans , Acute Kidney Injury/diagnosis , Albuminuria , Biomarkers/urine , Creatinine , Epidermal Growth Factor , Nephrons , Randomized Controlled Trials as Topic , Renal Insufficiency, Chronic , Clinical Trials as Topic
14.
AIDS ; 38(4): 465-475, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-37861689

OBJECTIVE: The aim of this study was to determine whether urine biomarkers of kidney health are associated with subclinical cardiovascular disease among men with and without HIV. DESIGN: A cross-sectional study within the Multicenter AIDS Cohort Study (MACS) among 504 men with and without HIV infection who underwent cardiac computed tomography scans and had urine biomarkers measured within the preceding 2 years. METHODS: Our primary predictors were four urine biomarkers of endothelial (albuminuria), proximal tubule dysfunction (alpha-1-microglobulin [A1 M] and injury (kidney injury molecule-1 [KIM-1]) and tubulointerstitial fibrosis (pro-collagen-III N-terminal peptide [PIIINP]). These were evaluated for association with coronary artery calcium (CAC) prevalence, CAC extent, total plaque score, and total segment stenosis using multivariable regression. RESULTS: Of the 504 participants, 384 were men with HIV (MWH) and 120 were men without HIV. In models adjusted for sociodemographic factors, cardiovascular disease risk factors, eGFR, and HIV-related factors, each two-fold higher concentration of albuminuria was associated with a greater extent of CAC (1.35-fold higher, 95% confidence interval 1.11-1.65), and segment stenosis (1.08-fold greater, 95% confidence interval 1.01-1.16). Associations were similar between MWH and men without HIV in stratified analyses. The third quartile of A1 M showed an association with greater CAC extent, total plaque score, and total segment stenosis, compared with the lowest quartile. CONCLUSION: Worse endothelial and proximal tubule dysfunction, as reflected by higher urine albumin and A1 M, were associated with greater CAC extent and coronary artery stenosis.


Cardiovascular Diseases , Coronary Artery Disease , HIV Infections , Plaque, Atherosclerotic , Male , Humans , Female , HIV Infections/complications , HIV Infections/epidemiology , Coronary Artery Disease/epidemiology , Cardiovascular Diseases/complications , Cohort Studies , Albuminuria , Cross-Sectional Studies , Constriction, Pathologic/complications , Risk Factors , Kidney , Biomarkers
15.
Am J Kidney Dis ; 83(1): 71-78, 2024 Jan.
Article En | MEDLINE | ID: mdl-37690632

RATIONALE & OBJECTIVE: Uromodulin (UMOD) is the most abundant protein found in urine and has emerged as a promising biomarker of tubule health. Circulating UMOD is also detectable, but at lower levels. We evaluated whether serum UMOD levels were associated with the risks of incident kidney failure with replacement therapy (KFRT) and mortality. STUDY DESIGN: Prospective cohort. SETTING & PARTICIPANTS: Participants in AASK (the African American Study of Kidney Disease and Hypertension) with available stored serum samples from the 0-, 12-, and 24-month visits for biomarker measurement. PREDICTORS: Baseline log-transformed UMOD and change in UMOD over 2 years. OUTCOMES: KFRT and mortality. ANALYTICAL APPROACH: Cox proportional hazards and mixed-effects models. RESULTS: Among 500 participants with baseline serum UMOD levels (mean age, 54y; 37% female), 161 KFRT events occurred during a median of 8.5 years. After adjusting for baseline demographic factors, clinical factors, glomerular filtration rate, log-transformed urine protein-creatinine ratio, and randomized treatment groups, a 50% lower baseline UMOD level was independently associated with a 35% higher risk of KFRT (adjusted HR, 1.35; 95% CI, 1.07-1.70). For annual UMOD change, each 1-standard deviation lower change was associated with a 67% higher risk of KFRT (adjusted HR, 1.67; 95% CI, 1.41-1.99). Baseline UMOD and UMOD change were not associated with mortality. UMOD levels declined more steeply for metoprolol versus ramipril (P<0.001) as well as for intensive versus standard blood pressure goals (P = 0.002). LIMITATIONS: Small sample size and limited generalizability. CONCLUSIONS: Lower UMOD levels at baseline and steeper declines in UMOD over time were associated with a higher risk of subsequent KFRT in a cohort of African American adults with chronic kidney disease and hypertension. PLAIN-LANGUAGE SUMMARY: Prior studies of uromodulin (UMOD), the most abundant protein in urine, and kidney disease have focused primarily on urinary UMOD levels. The present study evaluated associations of serum UMOD levels with the risks of kidney failure with replacement therapy (KFRT) and mortality in a cohort of African American adults with hypertension and chronic kidney disease. It found that participants with lower levels of UMOD at baseline were more likely to experience KFRT even after accounting for baseline kidney measures. Similarly, participants who experienced steeper annual declines in UMOD also had a heightened risk of kidney failure. Neither baseline nor annual change in UMOD was associated with mortality. Serum UMOD is a promising biomarker of kidney health.


Hypertension , Renal Insufficiency, Chronic , Renal Insufficiency , Adult , Humans , Female , Middle Aged , Male , Uromodulin , Prospective Studies , Black or African American , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/complications , Renal Insufficiency/complications , Renal Insufficiency, Chronic/complications , Glomerular Filtration Rate/physiology , Biomarkers
16.
Sci Transl Med ; 15(726): eade7287, 2023 12 13.
Article En | MEDLINE | ID: mdl-38091407

Acute kidney injury (AKI) is a major risk factor for long-term adverse outcomes, including chronic kidney disease. In mouse models of AKI, maladaptive repair of the injured proximal tubule (PT) prevents complete tissue recovery. However, evidence for PT maladaptation and its etiological relationship with complications of AKI is lacking in humans. We performed single-nucleus RNA sequencing of 120,985 nuclei in kidneys from 17 participants with AKI and seven healthy controls from the Kidney Precision Medicine Project. Maladaptive PT cells, which exhibited transcriptomic features of dedifferentiation and enrichment in pro-inflammatory and profibrotic pathways, were present in participants with AKI of diverse etiologies. To develop plasma markers of PT maladaptation, we analyzed the plasma proteome in two independent cohorts of patients undergoing cardiac surgery and a cohort of marathon runners, linked it to the transcriptomic signatures associated with maladaptive PT, and identified nine proteins whose genes were specifically up- or down-regulated by maladaptive PT. After cardiac surgery, both cohorts of patients had increased transforming growth factor-ß2 (TGFB2), collagen type XXIII-α1 (COL23A1), and X-linked neuroligin 4 (NLGN4X) and had decreased plasminogen (PLG), ectonucleotide pyrophosphatase/phosphodiesterase 6 (ENPP6), and protein C (PROC). Similar changes were observed in marathon runners with exercise-associated kidney injury. Postoperative changes in these markers were associated with AKI progression in adults after cardiac surgery and post-AKI kidney atrophy in mouse models of ischemia-reperfusion injury and toxic injury. Our results demonstrate the feasibility of a multiomics approach to discovering noninvasive markers and associating PT maladaptation with adverse clinical outcomes.


Acute Kidney Injury , Reperfusion Injury , Mice , Adult , Animals , Humans , Proteome/metabolism , Transcriptome/genetics , Kidney/metabolism , Kidney Tubules, Proximal , Acute Kidney Injury/genetics , Reperfusion Injury/metabolism , Disease Models, Animal
17.
Kidney Int Rep ; 8(12): 2665-2676, 2023 Dec.
Article En | MEDLINE | ID: mdl-38106577

Introduction: The kidney failure risk equation (KFRE) estimates a person's risk of kidney failure and has great potential utility in clinical care. Methods: We used mixed methods to explore implementation of the KFRE in nephrology clinics. Results: KFRE scores were integrated into the electronic health record at Johns Hopkins Medicine and were displayed to nephrology providers. Documentation of KFRE scores increased over time, reaching 25% of eligible outpatient nephrology clinic notes at month 11. Three providers documented KFRE scores in >75% of notes, whereas 25 documented scores in <10% of notes. Surveys and focus groups of nephrology providers were conducted to probe provider views on the KFRE. Survey respondents (n = 25) reported variability in use of KFRE for decisions such as maintaining nephrology care, referring for transplant evaluation, or providing dialysis modality education. Provider perspectives on the use of KFRE, assessed in 2 focus groups of 4 providers each, included 3 common themes as follows: (i) KFRE scores may be most impactful in the care of specific subsets of people with chronic kidney disease (CKD); (ii) there is uncertainty about KFRE risk-based thresholds to guide clinical care; and (iii) education of patients, nephrology providers, and non-nephrology providers on appropriate interpretations of KFRE scores may help maximize their utility. Conclusion: Implementation of the KFRE was limited by non-uniform provider adoption of its use, and limited knowledge about utilization of the KFRE in clinical decisions.

19.
bioRxiv ; 2023 Nov 12.
Article En | MEDLINE | ID: mdl-37986991

Acute kidney injury (AKI) in COVID-19 patients is associated with high mortality and morbidity. Critically ill COVID-19 patients are at twice the risk of in-hospital mortality compared to non-COVID AKI patients. We know little about the cell-specific mechanism in the kidney that contributes to worse clinical outcomes in these patients. New generation single cell technologies have the potential to provide insights into physiological states and molecular mechanisms in COVID-AKI. One of the key limitations is that these patients are severely ill posing significant risks in procuring additional biopsy tissue. We recently generated single nucleus RNA-sequencing data using COVID-AKI patient biopsy tissue as part of the human kidney atlas. Here we describe this approach in detail and report deeper comparative analysis of snRNAseq of 4 COVID-AKI, 4 reference, and 6 non-COVID-AKI biopsies. We also generated and analyzed urine transcriptomics data to find overlapping COVID-AKI-enriched genes and their corresponding cell types in the kidney from snRNA-seq data. We identified all major and minor cell types and states by using by using less than a few cubic millimeters of leftover tissue after pathological workup in our approach. Differential expression analysis of COVID-AKI biopsies showed pathways enriched in viral response, WNT signaling, kidney development, and cytokines in several nephron epithelial cells. COVID-AKI profiles showed a much higher proportion of altered TAL cells than non-COVID AKI and the reference samples. In addition to kidney injury and fibrosis markers indicating robust remodeling we found that, 17 genes overlap between urine cell COVID-AKI transcriptome and the snRNA-seq data from COVID-AKI biopsies. A key feature was that several of the distal nephron and collecting system cell types express these markers. Some of these markers have been previously observed in COVID-19 studies suggesting a common mechanism of injury and potentially the kidney as one of the sources of soluble factors with a potential role in disease progression. Translational Statement: The manuscript describes innovation, application and discovery that impact clinical care in kidney disease. First, the approach to maximize use of remnant frozen clinical biopsies to inform on clinically relevant molecular features can augment existing pathological workflow for any frozen tissue without much change in the protocol. Second, this approach is transformational in medical crises such as pandemics where mechanistic insights are needed to evaluate organ injury, targets for drug therapy and diagnostic and prognostic markers. Third, the cell type specific and soluble markers identified and validated can be used for diagnoses or prognoses in AKI due to different etiologies and in multiorgan injury.

...