Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nutr ; 56(2): 535-544, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26578530

ABSTRACT

PURPOSE: Global DNA hydroxymethylation is markedly decreased in human cancers, including hepatocellular carcinoma, which is associated with chronic alcohol consumption and aging. Because gene-specific changes in hydroxymethylcytosine may affect gene transcription, giving rise to a carcinogenic environment, we determined genome-wide site-specific changes in hepatic hydroxymethylcytosine that are associated with chronic alcohol consumption and aging. METHODS: Young (4 months) and old (18 months) male C57Bl/6 mice were fed either an ethanol-containing Lieber-DeCarli liquid diet or an isocaloric control diet for 5 weeks. Genomic and gene-specific hydroxymethylcytosine patterns were determined through hydroxymethyl DNA immunoprecipitation array in hepatic DNA. RESULTS: Hydroxymethylcytosine patterns were more perturbed by alcohol consumption in young mice than in old mice (431 differentially hydroxymethylated regions, DhMRs, in young vs 189 DhMRs in old). A CpG island ~2.5 kb upstream of the glucocorticoid receptor gene, Nr3c1, had increased hydroxymethylation as well as increased mRNA expression (p = 0.015) in young mice fed alcohol relative to the control group. Aging alone also altered hydroxymethylcytosine patterns, with 331 DhMRs, but alcohol attenuated this effect. Aging was associated with a decrease in hydroxymethylcytosine ~1 kb upstream of the leptin receptor gene, Lepr, and decreased transcription of this gene (p = 0.029). Nr3c1 and Lepr are both involved in hepatic lipid homeostasis and hepatosteatosis, which may create a carcinogenic environment. CONCLUSIONS: These results suggest that the location of hydroxymethylcytosine in the genome is site specific and not random, and that changes in hydroxymethylation may play a role in the liver's response to aging and alcohol.


Subject(s)
Aging/metabolism , Alcohol Drinking/metabolism , DNA Methylation , Liver/metabolism , Alcoholism/metabolism , Animals , Cytosine/analysis , Cytosine/chemistry , Cytosine/metabolism , DNA/chemistry , DNA/metabolism , DNA Methylation/genetics , Fatty Liver/genetics , Gene Regulatory Networks , Homeostasis/genetics , Hydroxylation/genetics , Lipid Metabolism/genetics , Liver/chemistry , Male , Mice , Mice, Inbred C57BL , Receptors, Leptin/genetics
3.
PLoS One ; 11(3): e0151579, 2016.
Article in English | MEDLINE | ID: mdl-26968002

ABSTRACT

BACKGROUND: The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well. OBJECTIVE: In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content. METHODS: Male Apc1638N mice (prone to intestinal tumor formation) were fed diets containing replete (control, CTRL), mildly deficient (DEF), or supplemental (SUPP) quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden. RESULTS: No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring. CONCLUSIONS: In this animal model, modulation of paternal B vitamin intake prior to mating alters offspring weight gain, lipid metabolism and tumor growth in a sex-specific fashion. These results highlight the need to better define how paternal nutrition affects the health of offspring.


Subject(s)
Fathers , Growth and Development/drug effects , Intestinal Neoplasms/pathology , Lipid Metabolism/drug effects , Liver/drug effects , Tumor Burden/drug effects , Vitamin B Complex/pharmacology , Adenomatous Polyposis Coli Protein/genetics , Animals , Body Weight/drug effects , DNA Methylation/drug effects , Female , Gene Expression Regulation/drug effects , Humans , Liver/metabolism , Male , Mice , Mutation , Reproduction/drug effects , Sex Characteristics , Spermatozoa/drug effects , Spermatozoa/metabolism , Vitamin B Complex/blood
4.
Tissue Eng Part C Methods ; 21(5): 499-508, 2015 May.
Article in English | MEDLINE | ID: mdl-25343343

ABSTRACT

Diabetic foot ulcers (DFU) are a major, debilitating complication of diabetes mellitus. Unfortunately, many DFUs are refractory to existing treatments and frequently lead to amputation. The development of more effective therapies has been hampered by the lack of predictive in vitro methods to investigate the mechanisms underlying impaired healing. To address this need for realistic wound-healing models, we established patient-derived fibroblasts from DFUs and site-matched controls and used them to construct three-dimensional (3D) models of chronic wound healing. Incorporation of DFU-derived fibroblasts into these models accurately recapitulated the following key aspects of chronic ulcers: reduced stimulation of angiogenesis, increased keratinocyte proliferation, decreased re-epithelialization, and impaired extracellular matrix deposition. In addition to reflecting clinical attributes of DFUs, the wound-healing potential of DFU fibroblasts demonstrated in this suite of models correlated with in vivo wound closure in mice. Thus, the reported panel of 3D DFU models provides a more biologically relevant platform for elucidating the cell-cell and cell-matrix-related mechanisms responsible for chronic wound pathogenesis and may improve translation of in vitro findings into efficacious clinical applications.


Subject(s)
Diabetic Foot/physiopathology , Fibroblasts/cytology , Fibroblasts/pathology , Tissue Engineering/methods , Animals , Cell Culture Techniques , Cytokines/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , In Vitro Techniques , Keratinocytes/cytology , Male , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic , Wound Healing
5.
Epigenetics ; 9(10): 1339-49, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25437049

ABSTRACT

Diabetic foot ulcers (DFUs) are a serious complication of diabetes. Previous exposure to hyperglycemic conditions accelerates a decline in cellular function through metabolic memory despite normalization of glycemic control. Persistent, hyperglycemia-induced epigenetic patterns are considered a central mechanism that activates metabolic memory; however, this has not been investigated in patient-derived fibroblasts from DFUs. We generated a cohort of patient-derived lines from DFU fibroblasts (DFUF), and site- and age-matched diabetic foot fibroblasts (DFF) and non-diabetic foot fibroblasts (NFF) to investigate global and genome-wide DNA methylation patterns using liquid chromatography/mass spectrometry and the Illumina Infinium HumanMethylation450K array. DFFs and DFUFs demonstrated significantly lower global DNA methylation compared to NFFs (p = 0.03). Hierarchical clustering of differentially methylated probes (DMPs, p = 0.05) showed that DFFs and DFUFs cluster together and separately from NFFs. Twenty-five percent of the same probes were identified as DMPs when individually comparing DFF and DFUF to NFF. Functional annotation identified enrichment of DMPs associated with genes critical to wound repair, including angiogenesis (p = 0.07) and extracellular matrix assembly (p = 0.035). Identification of sustained DNA methylation patterns in patient-derived fibroblasts after prolonged passage in normoglycemic conditions demonstrates persistent metabolic memory. These findings suggest that epigenetic-related metabolic memory may also underlie differences in wound healing phenotypes and can potentially identify therapeutic targets.


Subject(s)
DNA Methylation , Diabetic Foot/genetics , Epigenesis, Genetic , Fibroblasts/metabolism , Adult , Aged , Cell Line , Computational Biology , Diabetic Foot/metabolism , Female , Humans , Male , Middle Aged
6.
Physiol Genomics ; 46(17): 617-23, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25180283

ABSTRACT

S-adenosylmethionine (SAM), the unique methyl donor in DNA methylation, has been shown to lower lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokine TNF-α and increase the expression of the anti-inflammatory cytokine IL-10 in macrophages. The aim of this study was to assess whether epigenetic mechanisms mediate the anti-inflammatory effects of SAM. Human monocytic THP1 cells were differentiated into macrophages and treated with 0, 500, or 1,000 µmol/l SAM for 24 h, followed by stimulation with LPS. TNFα and IL-10 expression levels were measured by real-time PCR, cellular concentrations of SAM and S-adenosylhomocysteine (SAH), a metabolite of SAM, were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and DNA methylation was measured with LC-MS/MS and microarrays. Relative to control (0 µmol/l SAM), treatment with 500 µmol/l SAM caused a significant decrease in TNF-α expression (-45%, P < 0.05) and increase in IL-10 expression (+77%, P < 0.05). Treatment with 1,000 µmol/l SAM yielded no significant additional benefits. Relative to control, 500 µmol/l SAM increased cellular SAM concentrations twofold without changes in SAH, and 1,000 µmol/l SAM increased cellular SAM sixfold and SAH fourfold. Global DNA methylation increased 7% with 500 µmol/l SAM compared with control. Following treatment with 500 µmol/l SAM, DNA methylation microarray analysis identified 765 differentially methylated regions associated with 918 genes. Pathway analysis of these genes identified a biological network associated with cardiovascular disease, including a subset of genes that were differentially hypomethylated and whose expression levels were altered by SAM. Our data indicate that SAM modulates the expression of inflammatory genes in association with changes in specific gene promoter DNA methylation.


Subject(s)
DNA Methylation/drug effects , Inflammation/pathology , Macrophages/metabolism , S-Adenosylmethionine/pharmacology , Cardiovascular Diseases/genetics , Cell Line , DNA Methylation/genetics , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Humans , Interleukin-10/metabolism , Macrophages/drug effects , S-Adenosylhomocysteine/pharmacology , Tumor Necrosis Factor-alpha/metabolism
7.
Proc Nutr Soc ; 71(1): 75-83, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22051144

ABSTRACT

Nutritional epigenetics has emerged as a novel mechanism underlying gene-diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modulates gene expression without changes in the underlying bp sequence, ultimately determining phenotype from genotype. DNA methylation and post-translational histone modifications are classical levels of epigenetic regulation. Epigenetic phenomena are critical from embryonic development through the aging process, with aberrations in epigenetic patterns emerging as aetiological mechanisms in many age-related diseases such as cancer, CVD and neurodegenerative disorders. Nutrients can act as the source of epigenetic modifications and can regulate the placement of these modifications. Nutrients involved in one-carbon metabolism, namely folate, vitamin B12, vitamin B6, riboflavin, methionine, choline and betaine, are involved in DNA methylation by regulating levels of the universal methyl donor S-adenosylmethionine and methyltransferase inhibitor S-adenosylhomocysteine. Other nutrients and bioactive food components such as retinoic acid, resveratrol, curcumin, sulforaphane and tea polyphenols can modulate epigenetic patterns by altering the levels of S-adenosylmethionine and S-adenosylhomocysteine or directing the enzymes that catalyse DNA methylation and histone modifications. Aging and age-related diseases are associated with profound changes in epigenetic patterns, though it is not yet known whether these changes are programmatic or stochastic in nature. Future work in this field seeks to characterise the epigenetic pattern of healthy aging to ultimately identify nutritional measures to achieve this pattern.


Subject(s)
Aging/genetics , DNA Methylation , Diet , Epigenesis, Genetic , Micronutrients/metabolism , Animals , Cardiovascular Diseases/genetics , Epigenomics , Humans , Neoplasms/genetics , Neurodegenerative Diseases/genetics , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism
8.
J Mol Histol ; 41(2-3): 137-42, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20549314

ABSTRACT

Vitamin D receptors have been shown to be present in human skeletal muscle using different techniques. We developed a multi-staining immunofluorescent method to detect vitamin D receptor expression and co-localize it with myosin heavy chain isoform expression in skeletal muscle biopsies in older female subjects. Serial sections were cut from frozen samples obtained by needle biopsy of the vastus lateralis. Samples were probed with a primary vitamin D receptor monoclonal antibody and then re-probed with a type IIa myosin heavy chain isoform-specific antibody. Independent unfixed sections followed a similar protocol and were probed with type IIx and type I myosin heavy chain isoform-specific antibodies. Immunohistochemistry and fluorescent microscopy co-localized vitamin D receptor loci and myosin heavy chain isoforms in whole skeletal muscle sections. We quantified intranuclear vitamin D receptor staining patterns and number of individual muscle fiber subtypes within a muscle section. Immunohistochemical staining of the vitamin D receptor was confirmed by Western blot using the same monoclonal antibody. This multi-staining immunofluorescent technique allows for measurement of intranuclear vitamin D receptor expression in the context of the specific muscle fiber type profile in a single section. This method can thus be a useful approach to study potential relationships between muscle fiber subtypes and vitamin D receptor expression.


Subject(s)
Fluorescent Antibody Technique/methods , Muscle Fibers, Skeletal/metabolism , Myosin Heavy Chains/biosynthesis , Quadriceps Muscle/metabolism , Receptors, Calcitriol/biosynthesis , Aged , Aged, 80 and over , Biopsy, Needle , Blotting, Western , Female , Humans , Microscopy, Fluorescence , Myosin Heavy Chains/metabolism , Receptors, Calcitriol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...