Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Neurotox Res ; 41(2): 187-200, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36662412

ABSTRACT

It is now well recognized that a bidirectional relationship between gut microbiota and the brain, referred to as the gut-brain axis, plays a prominent role in maintaining homeostasis and that a disruption in this axis can result in neuroinflammatory response and neurological disorders such as Parkinson's disease (PD). The protective action of probiotics such as Bifidobacterium animalis ssp. lactis Bb12 and Lactobacillus rhamnosus GG in various animal models of PD has been reported. Therefore, in this study, we used an inflammatory model of PD to assess the effects of a combination of these two probiotics (Microbiot®) on motor behavior as well as on the response of microglia, including microglia morphology, to gain a better understanding of their mechanism of action. Microbiot® (300 µL) was administered orally once daily for 15 days in a lipopolysaccharide-induced PD model using male Wistar rats. Although LPS-induced motor asymmetry in cylinder test was not affected by Microbiot®, impairment of motor coordination in the narrow-beam test was significantly reduced by this probiotic. Moreover, Microbiot® treatment reduced microglial activation suggesting an anti-inflammatory effect. While further mechanistic investigation of Microbiot® in neurodegenerative diseases is warranted, our results support the potential utility of probiotics in PD.


Subject(s)
Bifidobacterium animalis , Lacticaseibacillus rhamnosus , Parkinson Disease , Probiotics , Rats , Male , Animals , Parkinson Disease/drug therapy , Rats, Wistar , Probiotics/pharmacology , Probiotics/therapeutic use , Lipopolysaccharides/toxicity
2.
Int J Neuropsychopharmacol ; 26(3): 230-239, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36433759

ABSTRACT

BACKGROUND: Paroxetine (PX) is a widely used antidepressant with side effects such as weakness, dizziness, and trouble sleeping. In search of novel compounds with better efficacy and fewer side effects, we synthesized 3HPX, a hydroxylated analog of PX, and compared the 2 in silico for their pharmacokinetic and binding properties and in vivo for their antidepressant and potential neuroprotective effects. METHODS: In silico studies compared pharmacological properties as well as interactions of PX and 3HPX with the serotonin transporter. In vivo studies utilized an animal model of comorbid depression-Parkinson disease. Adult male Wistar rats were injected (sterotaxically) with lipopolysaccharide in the striatum (unilaterally), followed by 14 days of once-daily injections (i.p.) of 10 mg/kg PX or 3HPX. Animals were tested for motor asymmetry and locomotor activity as well as indices of anhedonia and helplessness using sucrose preference and forced swim tests, respectively. Brains of these animals were collected after the last test, and tyrosine hydroxylase-positive neurons in substantia nigra pars compacta and Iba-1-positive stained microglia in ipsilateral striatum were measured. RESULTS: In silico findings indicated that 3HPX could bind stronger to serotonin transporter and also have a better clearance and hence less toxicity compared with PX. In vivo results revealed a more effective reversal of immobility in the swim test, substantial increase in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta, and more ramified Iba-1+ cells by 3HPX compared with PX. CONCLUSION: The findings suggest superior effectiveness of 3HPX as an antidepressant and neuroprotectant compared with PX and hence potential utility in Parkinson disease depression co-morbidity.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Rats , Male , Animals , Paroxetine/pharmacology , Paroxetine/therapeutic use , Parkinson Disease/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Wistar , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Disease Models, Animal
3.
Neuroscience ; 507: 79-98, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36370934

ABSTRACT

Gut dysbiosis is considered a risk factor for Parkinson's disease (PD), and chronic treatment with probiotics could prevent it. Here we report the assessment of a probiotic mixture [Lacticaseibacillus rhamnosus GG (LGG), and Bifidobacterium animalis lactis BB-12 (BB-12)] administered to male rats 2 weeks before and 3 weeks after injecting 6-hydroxydopamine (6-OHDA) into the right striatum, a model that mimics the early stages of PD. Before and after lesion, animals were subjected to behavioral tests: narrow beam, cylinder test, and apomorphine (APO)-induced rotations. Dopaminergic (DA) denervation and microglia recruitment were assessed with tyrosine hydroxylase (TH+) and ionized calcium-binding protein-1 adapter (Iba1+) immunostaining, respectively. Post 6-OHDA injury, rats treated with sunflower oil (probiotics vehicle) developed significant decrease in crossing speed and increases in contralateral paw slips (narrow beam), forepaw use asymmetry (cylinder), and APO-induced rotations. In striatum, 6-OHDA eliminated ≈2/3 of TH+ area and caused significant increase of Iba1+ microglia population. Retrograde axonal degeneration suppressed ≈2/5 of TH+ neurons in the substantia nigra pars compacta (SNpc). In hemiparkinsonian rats, probiotics treatment significantly improved the crossing speed, and also reduced paw slips (postlesion days 14 and 21), the loss of TH+ neurons in SNpc, and the loss of TH+ area and of Iba1+ microglia count in striatum, without affecting the proportion of microglia morphological phenotypes. Probiotics treatment did not attenuate forepaw use asymmetry nor APO-induced rotations. These results indicate that the mixture of probiotics LGG and BB-12 protects nigrostriatal DA neurons against 6-OHDA-induced damage, supporting their potential as preventive treatment of PD.


Subject(s)
Bifidobacterium animalis , Lacticaseibacillus rhamnosus , Motor Disorders , Parkinson Disease , Probiotics , Rats , Male , Animals , Oxidopamine , Bifidobacterium animalis/metabolism , Parkinson Disease/pathology , Microglia/metabolism , Lacticaseibacillus , Substantia Nigra/metabolism , Motor Disorders/pathology , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Dopamine , Apomorphine/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Probiotics/pharmacology
4.
Neurotox Res ; 37(1): 1-11, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31478124

ABSTRACT

Parkinson's disease (PD) is an idiopathic and progressive neurodegenerative disease characterized by the loss of ~ 80% of dopaminergic neurons in substantia nigra pars compacta (SNpc). Because activation of the innate cellular immune response, mediated by microglia, has been linked to the neurodegeneration in PD, in the present study, we evaluated the effects of lipopolysaccharide (LPS) and 6-hydroxydopamine (6-OHDA) on microglia's morphology, reflective of their activity, as well as tyrosine hydroxylase (TH)-positive neurons in SNpc and motor behavior. Adult male Wistar rats were stereotactically injected with LPS or 6-OHDA into the left dorsolateral striatum. Control groups received appropriate vehicle. The morphological changes of microglial cells and neurotoxic effects were examined at 1, 7, and 14 post-injection days. Both LPS and 6-OHDA caused activation and morphological changes in microglial cells as well as loss of dopaminergic neurons in SNpc. These effects were maximal at 14 days post-injection where motor impairments were also evident. However, our findings indicate that 6-OHDA causes a low degree of microglia activation compared to LPS. Hence, it may be concluded that LPS model of PD might be a better representation of inflammatory involvement in this devastating disease.


Subject(s)
Lipopolysaccharides/toxicity , Microglia/pathology , Oxidopamine/toxicity , Parkinson Disease, Secondary/pathology , Animals , Corpus Striatum/drug effects , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Lipopolysaccharides/administration & dosage , Male , Microinjections , Motor Activity/drug effects , Oxidopamine/administration & dosage , Parkinson Disease, Secondary/chemically induced , Pars Compacta/metabolism , Pars Compacta/pathology , Rats , Time Factors , Tyrosine 3-Monooxygenase/metabolism
5.
Neurotox Res ; 35(3): 699-710, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30607904

ABSTRACT

Reports indicate that striatal dopaminergic damage induced by 6-hydoxydopamine (6-OHDA) can be blocked by C-terminal domain of tetanus toxin (Hc-TeTx), suggesting possible therapeutic potential of Hc-TeTx in Parkinson's disease (PD). Pramipexole (PPX), a D2/D3 dopaminergic agonist, is currently used in PD treatment. The purpose of this study was to gain some understanding of the actions of each drug, including potential antioxidant and anti-inflammatory effects and importantly, to determine whether the combination of the two drugs would be superior to each alone. Adult male Wistar rats were administered 6-OHDA into the dorso-lateral striatum, and the effects of Hc-TeTx fragment (20 µg/kg i.m. every 24 h) for 3 days; PPX (1 mg/kg p.o., every 12 h) for 30 days and their combination on various motor and neurochemical parameters were evaluated. Behavioral tests were carried out at 15 and 30 days post-treatments. At day 31, the animals were sacrificed and the levels of tyrosine hydroxylase (TH), reflecting dopaminergic activity in both striatum and substantia nigra, were evaluated. In addition, indices of astrogliosis, microgliosis, as well as oxidative stress in the striatum were determined. Both Hc-TeTx and PPX ameliorated the motor and neurochemical deficits induced by 6-OHDA lesion; however, the combination of the two drugs was not superior to each alone. Hence, at concentrations used in this study, no significant advantage in combining Hc-TeTx with PPX was noted. Although the results suggest similar neurochemical effects of the two compounds, further evaluation of different concentrations of Hc-TeTx and PPX as potential intervention in PD is warranted.


Subject(s)
Antiparkinson Agents/pharmacology , Parkinsonian Disorders/drug therapy , Peptide Fragments/pharmacology , Pramipexole/pharmacology , Tetanus Toxin/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Drug Therapy, Combination , Gliosis/drug therapy , Gliosis/metabolism , Gliosis/pathology , Male , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Motor Activity/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Oxidopamine , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Random Allocation , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL