Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985680

ABSTRACT

Bis-acyl-thiourea derivatives, namely N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N'-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N'-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds' interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound-DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40-120 µM.


Subject(s)
Brain Neoplasms , Urease , Humans , Molecular Docking Simulation , HEK293 Cells , Anti-Bacterial Agents/pharmacology , DNA/chemistry , Thiourea/chemistry , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology
2.
Indian J Tuberc ; 68(1): 106-113, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33641829

ABSTRACT

Tuberculosis is currently an anticipated driver of pandemic diseases. It remains an imminent issue accounting for about 1.4 million deaths annually across the world. Since the evolution of human entity drug susceptible tuberculosis was managed through potent first line therapies. Unfortunately, the emergence of newer multitude strains refractory amongst available drugs in Drug resistant TB has led to an emergence MDR-TB and XDR-TB. Moreover, the increasing incidence of drug susceptible TB in developing countries paved way to development of new guidelines for treating various form of tuberculosis. Furthermore, newer regimens are warranted to combat resistance that preferably cause a reduction in mortality. Until now, various ongoing trials are being carried in order to potentially evaluate the suitable novel drug candidates, repurposed drugs and host directed therapies that will optimistically be safe, easy to tolerate, cost effective and non-toxic that will modify the prospects for treating drug resistant TB and latent TB. In context, the current scenario seems to impose a significant challenge on health care researchers in the field of drug discovery owing to complexities, prolong treatment duration, and is cumbersome. Pretomanid is a novel drug with potent bactericidal properties emerging a key advancement used in combination along with other drug therapies This review details the role of pretomanid in treating tuberculosis and the clinical trials in adultsd.


Subject(s)
Antitubercular Agents/therapeutic use , Nitroimidazoles/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/administration & dosage , Drug Therapy, Combination , Humans , Nitroimidazoles/administration & dosage
3.
Drug Des Devel Ther ; 14: 2237-2247, 2020.
Article in English | MEDLINE | ID: mdl-32606594

ABSTRACT

INTRODUCTION: Ziprasidone (ZP) is a novel atypical antipsychotic agent effective in the treatment of positive and negative symptoms of schizophrenia with low chances for extrapyramidal side effects (EPs) and cognitive deficits. ZP possesses poor oral bioavailability (~50%), short biological half-life (~2.5 h) and due to extensive first-pass metabolism, a repeated dose is administered which makes the therapy non-adherent, leading to patient non-compliance. Therefore, this is a first report of developing parenteral ZP loaded sustained release phospholipid based phase-transition system (ZP-LPS). METHODS: The ZP-LPS system was formulated by mixing of biocompatible materials including phospholipid E 80, medium chain triglyceride (MCT) and ethanol. Optimization was done by aqueous titration method using pseudo-ternary phase diagram and dynamic rheological measurements. In vivo depot formation was confirmed by gamma scintigraphy after subcutaneous injection. Biodegradation and biocompatibility studies were performed for its safety evaluation. Finally, the efficacy of the formulation was assessed by Morris water maze (MWM) test and dizocilpine (MK-801) was used to induce schizophrenia in Sprague-Dawley rats. RESULTS: Optimized ZP-LPS showed rapid gelation (2 min), highest change in viscosity (~48000 mPa.s) and sustained release of ZP over a period of 1 month. Gamma scintigraphy depicted that the low-viscosity ZP-LPS system undergo rapid in situ gelation. Biodegradation and biocompatibility studies revealed gradual degradation in size of depot over a period of 28 days without any inflammation at the injection site. In MWM test, escape latency, time spent and total distance in target quadrant were significantly improved (p < 0.001) in the ZP-LPS group in comparison to the MK-801 group when evaluated at day 0, day 7 and day 28. However, significant improvement (p < 0.001) was observed only at day 0 in ZP suspension group. CONCLUSION: The overall result indicates that the novel ZP-LPS system is safe, biodegradable, and effective for the management of schizophrenia.


Subject(s)
Antipsychotic Agents/therapeutic use , Delayed-Action Preparations/therapeutic use , Lipids/therapeutic use , Piperazines/therapeutic use , Schizophrenia/drug therapy , Thiazoles/therapeutic use , Animals , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Lipids/chemistry , Lipids/pharmacokinetics , Male , Piperazines/chemistry , Piperazines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Thiazoles/chemistry , Thiazoles/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...