Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Proc Natl Acad Sci U S A ; 121(19): e2319937121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38696469

Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.


Bacteria , Oceans and Seas , Seawater , Seawater/microbiology , Seawater/chemistry , Bacteria/metabolism , Carbon/metabolism , Carbon Cycle , Chlorophyll/metabolism , Ecosystem , Phytoplankton/metabolism , Seasons , Biomass , Microbiota/physiology , Oxygen/metabolism
2.
PLoS One ; 9(11): e111482, 2014.
Article En | MEDLINE | ID: mdl-25372789

A three dimensional biophysical model was employed to illustrate the biological impacts of a meandering frontal jet, in terms of efficiency and persistency of the autotrophic frontal production, in marginal and semi-enclosed seas. We used the Alboran Sea of the Western Mediterranean as a case study. Here, a frontal jet with a width of 15-20 km, characterized by the relatively low density Atlantic water mass, flows eastward within the upper 100 m as a marked meandering current around the western and the eastern anticyclonic gyres prior to its attachment to the North African shelf/slope topography of the Algerian basin. Its inherent nonlinearity leads to the development of a strong ageostrophic cross-frontal circulation that supplies nutrients into the nutrient-starved euphotic layer and stimulates phytoplankton growth along the jet. Biological production is larger in the western part of the basin and decreases eastwards with the gradual weakening of the jet. The higher production at the subsurface levels suggests that the Alboran Sea is likely more productive than predicted by the satellite chlorophyll data. The Mediterranean water mass away from the jet and the interiors of the western and eastern anticyclonic gyres remain unproductive.


Oceans and Seas , Plankton , Biomass , Mediterranean Sea , Models, Theoretical
3.
PLoS One ; 8(2): e55523, 2013.
Article En | MEDLINE | ID: mdl-23451027

The Strait of Gibraltar replenishes the Mediterranean with Atlantic waters through an intense eastward current known as the Atlantic Jet (AJ). The AJ fertilizes the southwestern Mediterranean and is considered to be the ultimate factor responsible for the comparatively high fish production of this region. Here, we perform an analysis of the available historical catches and catch per unit effort (CPUE), together with a long series of surface currents, kinetic energy and chlorophyll concentration. We show that the high kinetic energy of the AJ increases primary production but also negatively impacts the recruitment of anchovy. We contend that anchovy recruitment in the region is inhibited by the advection and dispersion of larvae and post-larvae during periods of strong advection by the AJ. The inhibitory impact of kinetic energy on anchovy landings is not a transient but rather a persistent state of the system. An exceptional combination of events creates an outbreak of this species in the Alboran Sea. These events depend on the Mediterranean-Atlantic exchange of water masses and, therefore, are highly sensitive to climate changes that are projected, though not always negatively, for fish landings.


Fishes/growth & development , Population Dynamics , Animals , Environmental Monitoring/methods , Mediterranean Sea
...