Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 257(Pt 1): 128126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37981273

ABSTRACT

The present investigation explores the different pathways for development of waste tea residue carbon dots (WTR-CDs) loading into hydrogel matrix for WTR-CDs releasing probe. Fluorescent WTR-CDs incorporated into hydrogel matrix were synthesized by valorisation of kitchen waste tea by simple carbonization method (λem = 450 nm, ΦWTR-CDs =18.45 %). Biopolymeric alginate-based hydrogel beads (HB-Alg) were prepared by simple extrusion method. Three routes (ex-situ/in-situ) were employed for loading of WTR-CDs into hydrogel matrix. Successful synthesis of WTR-CDs and its loading into hydrogel matrix was confirmed via various characterization techniques. Developed protocol was employed for stimuli-responsive cumulative release of WTR-CDs study (pH = 3.0, 7.4, 9.0) was monitored over 7 days. Results suggests that, the HB-Alg@WTR-CDs-A system with in-situ loaded WTR-CDs have sustained release due to ionic interaction of WTR-CDs with crosslinked polymer network, whereas in HB-Alg@WTR-CDs-B, WTR-CDs loaded in wet-beads having burst release in which loosely bound WTR-CDs into hydrogel cavities releases rapidly. While, in case of HB-Alg@WTR-CDs-C, lowest release was observed due to weakly surface bound WTR-CDs, low loading and shrinkage of pores into dry-beads. Radical scavenging activity was studied and shown antioxidant properties of WTR-Powder, WTR-CDs and HB-Alg@WTR-CDs-A,B,C. Cytotoxicity of all systems was checked via CAM assay and significant growth in blood vascularization with no loss of chick embryo confirming the released WTR-CDs are biocompatible. Successful investigation and summarization of results ensure that, waste-valorisation, simple, sustainable, and smart hydrogel systems with different routes of WTR-CDs loading have opened a window to understand the mechanistic pathways in release behaviour. This robust approach for improvement of smarter and biocompatible materials can be fruitfully applicable in advanced, controlled and stimuli responsive delivery probes.


Subject(s)
Alginates , Hydrogels , Chick Embryo , Animals , Alginates/chemistry , Hydrogels/chemistry , Carbon , Biocompatible Materials/chemistry , Tea
2.
Virology ; 555: 10-18, 2021 03.
Article in English | MEDLINE | ID: mdl-33421743

ABSTRACT

Novel coronavirus (SARS-CoV-2), turned out to be a global pandemic with unstoppable morbidity and mortality rate. However, till date there is no effective treatment found against SARS-CoV-2. We report on the major in-depth molecular and docking analysis by using antiretroviral (Lopinavir and ritonavir), antimalarial (Hydroxychloroquine), antibiotics (Azithromycin), and dietary supplements (Vitamin C and E) to provide new insight into drug repurposing molecular events involved in SARS-CoV-2. We constructed three drug-target-pathways-disease networks to predict the targets and drugs interactions as well as important pathways involved in SARS-CoV-2. The results suggested that by using the combination of Lopinavir, Ritonavir along with Hydroxychloroquine and Vitamin C may turned out to be the effective line of treatment for SARS-CoV-2 as it shows the involvement of PARP-1, MAPK-8, EGFR, PRKCB, PTGS-2, and BCL-2. Gene ontology biological process analysis further confirmed multiple viral infection-related processes (P < 0.001), including viral life cycle, modulation by virus, C-C chemokine receptor activity, and platelet activation. KEGG pathway analysis involves multiple pathways (P < 0.05), including FoxO, GnRH, ErbB, Neurotrophin, Toll-like receptor, IL-17, TNF, Insulin, HIF-1, JAK-STAT, Estrogen, NF-kappa, Chemokine, VEGF, and Thyroid hormone signaling pathway in SARS-CoV-2. Docking study was carried out to predict the molecular mechanism Thus, the potential drug combinations could reduce viral infectivity, viral replication, and abnormal host inflammatory responses and may be useful for multi-target drugs against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , SARS-CoV-2/drug effects , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , COVID-19/virology , Drug Development , Drug Therapy, Combination , Humans , Hydroxychloroquine/metabolism , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Lopinavir/metabolism , Lopinavir/pharmacology , Lopinavir/therapeutic use , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Ritonavir/metabolism , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Signal Transduction , Virus Replication/drug effects
3.
Acta Neurochir (Wien) ; 156(2): 349-54, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24357019

ABSTRACT

AIMS AND OBJECTIVE: Extra ventricular neurocytoms (EVN) are a rare parenchymal brain tumour distinct from central neurocytomas. This review attempts to analyze a series of seven cases of EVN from a single institute against the background of available literature. METHOD: Retrospective analysis of the clinical manifestation, pathological features, imaging findings, microsurgical treatment effectiveness and progression free survival of seven cases of EVN operated between 2000-2012. RESULTS: The study group included five females and two males in the age group 7-65 years (mean 30.71 yrs). The distribution of the lesion was as follows Lobar 4, Cerebellum 1, Pineal 1, spinal 1. The duration of clinical symptoms ranged from three months to seven years and the presentation was site and size specific. Cystic Changes (71 %), perilesional oedema (57 %) and heterogeneous contrast enhancement (85.7 %), and calcification (42 %) were a few distinct imaging characteristics. Increased perfusion correlated with atypical histology in two patients. Surgical resection remains the main management strategy for longer outcome and patients with STR + RT and GTR had comparable follow-up. Extremes of age and atypical histological features were adverse prognostic factors. CONCLUSION: EVN are rare tumors with either glial or neuronal differentiation or a potential for atypical changes. Both, GTR and STR combined with RT, offer reasonably good outcome with overall comparable survival. The available literature of EVN is limited, larger series with long term follow-ups are needed to dictate the management protocol. The role of adjuvant therapy is still debatable and needs further validation.


Subject(s)
Cerebral Ventricle Neoplasms/therapy , Neurocytoma/therapy , Cerebral Ventricle Neoplasms/pathology , Combined Modality Therapy , Humans , Neurocytoma/pathology , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...