Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25485264

ABSTRACT

The loaded disk culture system is an intervertebral disk (IVD)-oriented bioreactor developed by the VU Medical Center (VUmc, Amsterdam, The Netherlands), which has the capacity of maintaining up to 12 IVDs in culture, for approximately 3 weeks after extraction. Using this system, eight goat IVDs were provided with the essential nutrients and submitted to compression tests without losing their biomechanical and physiological properties, for 22 days. Based on previous reports (Paul et al., 2012, 2013; Detiger et al., 2013), four of these IVDs were kept in physiological condition (control) and the other four were previously injected with chondroitinase ABC (CABC), in order to promote degenerative disk disease (DDD). The loading profile intercalated 16 h of activity loading with 8 h of loading recovery to express the standard circadian variations. The displacement behavior of these eight IVDs along the first 2 days of the experiment was numerically reproduced, using an IVD osmo-poro-hyper-viscoelastic and fiber-reinforced finite element (FE) model. The simulations were run on a custom FE solver (Castro et al., 2014). The analysis of the experimental results allowed concluding that the effect of the CABC injection was only significant in two of the four IVDs. The four control IVDs showed no signs of degeneration, as expected. In what concerns to the numerical simulations, the IVD FE model was able to reproduce the generic behavior of the two groups of goat IVDs (control and injected). However, some discrepancies were still noticed on the comparison between the injected IVDs and the numerical simulations, namely on the recovery periods. This may be justified by the complexity of the pathways for DDD, associated with the multiplicity of physiological responses to each direct or indirect stimulus. Nevertheless, one could conclude that ligaments, muscles, and IVD covering membranes could be added to the FE model, in order to improve its accuracy and properly describe the recovery periods.

2.
Cancer Biol Ther ; 7(5): 786-93, 2008 May.
Article in English | MEDLINE | ID: mdl-18756624

ABSTRACT

Malignant glioma continues to be a major target for gene therapy and virotherapy due to its aggressive growth and the current lack of effective treatment. However, these approaches have been hampered by inefficient infection of glioma cells by viral vectors,particularly vectors derived from serotype 5 adenoviruses (Ad5). This results from limited cell surface expression of the primary adenovirus receptor, coxsackie-adenovirus-receptor (CAR), on tumor cells. To circumvent this problem, Ad fiber pseudotyping,the genetic replacement of either the entire fiber or fiber knob domain with its structural counterpart from another human Ad serotype that recognizes a cellular receptor other than CAR, has been shown to enhance Ad infectivity in a variety of tumor types,including human glioma. Here, we have extended the paradigm of genetic pseudotyping to include fiber domains from non-human or"xenotype" Ads for infectivity enhancement of human glioma cell populations. In this study, we evaluated the gene transfer efficiency of a panel of Ad vectors which express one of five different "xenotype"fiber knob domains, including those derived from murine,ovine, porcine and canine species, in both human glioma cell lines as well as primary glioma tumor cells from patients. Adenovirus vectors displaying either canine Ad or porcine Ad fiber elements had the highest gene transfer to both glioma cell lines and primary tumor cells. The correlation between the viral infectivity of modified adenovirus vectors and expression of human CAR and CD46(an adenovirus type B receptor) on the surfaces of tumor cells was also analyzed. Taken together, human adenovirus vectors modified with "xenotype" fiber elements could be excellent candidates to target human glioma.


Subject(s)
Adenoviridae/metabolism , Brain Neoplasms/metabolism , Glioma/metabolism , Animals , Cell Line, Tumor , Constitutive Androstane Receptor , Cytomegalovirus/metabolism , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors , Humans , Membrane Cofactor Protein/metabolism , Mice , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL